Refocused Attention: Long Short-Term Rewards Guided Video Captioning

被引:1
|
作者
Dong, Jiarong [1 ,2 ]
Gao, Ke [1 ]
Chen, Xiaokai [1 ,2 ]
Cao, Juan [1 ]
机构
[1] Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
关键词
Video captioning; Hierarchical attention; Reinforcement learning; Reward;
D O I
10.1007/s11063-019-10030-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The adaptive cooperation of visual model and language model is essential for video captioning. However, due to the lack of proper guidance for each time step in end-to-end training, the over-dependence of language model often results in the invalidation of attention-based visual model, which is called 'Attention Defocus' problem in this paper. Based on an important observation that the recognition precision of entity word can reflect the effectiveness of the visual model, we propose a novel strategy called refocused attention to optimize the training and cooperating of visual model and language model, using ingenious guidance at appropriate time step. The strategy consists of a short-term-reward guided local entity recognition and a long-term-reward guided global relation understanding, neither requires any external training data. Moreover, a framework with hierarchical visual representations and hierarchical attention is established to fully exploit the potential strength of the proposed learning strategy. Extensive experiments demonstrate that the ingenious guidance strategy together with the optimized structure outperform state-of-the-art video captioning methods with relative improvements 7.7% in BLEU-4 and 5.0% in CIDEr-D on MSVD dataset, even without multi-modal features.
引用
收藏
页码:935 / 948
页数:14
相关论文
共 50 条
  • [11] Long-term Leap Attention, Short-term Periodic Shift for Video Classification
    Zhang, Hao
    Cheng, Lechao
    Hao, Yanbin
    Ngo, Chong-wah
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 5773 - 5782
  • [12] Video Summarization with Long Short-Term Memory
    Zhang, Ke
    Chao, Wei-Lun
    Sha, Fei
    Grauman, Kristen
    COMPUTER VISION - ECCV 2016, PT VII, 2016, 9911 : 766 - 782
  • [13] Syntax-Guided Hierarchical Attention Network for Video Captioning
    Deng, Jincan
    Li, Liang
    Zhang, Beichen
    Wang, Shuhui
    Zha, Zhengjun
    Huang, Qingming
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (02) : 880 - 892
  • [14] A forecast model of short-term wind speed based on the attention mechanism and long short-term memory
    Xing, Wang
    Qi-liang, Wu
    Gui-rong, Tan
    Dai-li, Qian
    Ke, Zhou
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (15) : 45603 - 45623
  • [15] A forecast model of short-term wind speed based on the attention mechanism and long short-term memory
    Wang Xing
    Wu Qi-liang
    Tan Gui-rong
    Qian Dai-li
    Zhou Ke
    Multimedia Tools and Applications, 2024, 83 : 45603 - 45623
  • [16] LSTA: Long Short-Term Attention for Egocentric Action Recognition
    Sudhakaran, Swathikiran
    Escalera, Sergio
    Lanz, Oswald
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 9946 - 9955
  • [17] Long- and Short-term Attention Network for Knowledge Tracing
    Xu, Liancheng
    Wang, Guangchao
    Guo, Lei
    Wang, Xinhua
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [18] Long Short-Term Relation Networks for Video Action Detection
    Li, Dong
    Yao, Ting
    Qiu, Zhaofan
    Li, Houqiang
    Mei, Tao
    PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA (MM'19), 2019, : 629 - 637
  • [19] Short-term Load Forecasting by Long- and Short-term Temporal Networks With Attention Based on Modal Decomposition
    Qiao S.
    Wang L.
    Zhang P.
    Yan Q.
    Wang G.
    Dianwang Jishu/Power System Technology, 2022, 46 (10): : 3940 - 3951
  • [20] Recommendation Based on Users' Long-Term and Short-Term Interests with Attention
    Tan, Qiaoqiao
    Liu, Fang'ai
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2019, 2019