Homotopy RG flow and the non-linear σ-model

被引:1
|
作者
Grady, Ryan [1 ]
Williams, Brian [2 ]
机构
[1] Montana State Univ, Dept Math Sci, Bozeman, MT 59717 USA
[2] Northwestern Univ, Dept Math, Evanston, IL 60208 USA
基金
美国国家科学基金会;
关键词
D O I
10.1090/conm/718/14477
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of this note is to give a mathematical treatment to the low energy effective theory of the two-dimensional sigma-model. Perhaps surprisingly, this low energy effective theory encodes much of the topology and geometry of the target manifold. In particular, we relate the beta-function of our theory to the Ricci curvature of the target, recovering the physical result of Friedan.
引用
收藏
页码:187 / 211
页数:25
相关论文
共 50 条
  • [21] Controllability and observability in non-linear flow reservoir model (Retracted)
    Nwankwor, E.
    Nagar, A. K.
    Reid, D. C.
    IET CONTROL THEORY AND APPLICATIONS, 2012, 6 (10): : 1456 - 1467
  • [22] Guaranteeing the homotopy type of a set defined by non-linear inequalities
    Delanoue, Nicolas
    Jaulin, Luc
    Cottenceau, Bertrand
    RELIABLE COMPUTING, 2007, 13 (05) : 381 - 398
  • [23] Numerically solving non-linear problems by the homotopy analysis method
    Liao, SJ
    COMPUTATIONAL MECHANICS, 1997, 20 (06) : 530 - 540
  • [24] The Scalar Homotopy Method for Solving Non-Linear Obstacle Problem
    Fan, Chia-Ming
    Liu, Chein-Shan
    Yeih, Weichung
    Chan, Hsin-Fang
    CMC-COMPUTERS MATERIALS & CONTINUA, 2010, 15 (01): : 67 - 86
  • [25] SOLVING OF THE FRACTIONAL NON-LINEAR AND LINEAR SCHRODINGER EQUATIONS BY HOMOTOPY PERTURBATION METHOD
    Baleanu, Dumitru
    Golmankhaneh, Alireza K.
    Golmankhaneh, Ali K.
    ROMANIAN JOURNAL OF PHYSICS, 2009, 54 (9-10): : 823 - 832
  • [27] Assessment of homotopy analysis method and homotopy perturbation method in non-linear heat transfer equation
    Domairry, G.
    Nadim, N.
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2008, 35 (01) : 93 - 102
  • [28] NON-LINEAR STATIC MODEL
    BOLSTERLI, M
    PHYSICAL REVIEW D, 1983, 27 (02): : 349 - 356
  • [29] A NON-LINEAR GENETIC MODEL
    SEDCOLE, JR
    THEORETICAL AND APPLIED GENETICS, 1982, 62 (01) : 5 - 7
  • [30] NON-LINEAR MODEL FOR ACETAZOLAMIDE
    KUNKA, RL
    MATTOCKS, AM
    JOURNAL OF PHARMACEUTICAL SCIENCES, 1979, 68 (03) : 342 - 346