Directed Self-Assembly of Block Copolymers on Sparsely Nanopatterned Substrates

被引:21
|
作者
Chen, Peng [1 ,5 ]
Liang, Haojun [2 ,3 ]
Xia, Ru [1 ,5 ]
Qian, Jiasheng [1 ,5 ]
Feng, Xiaoshuang [1 ,4 ,5 ]
机构
[1] Anhui Univ, Sch Chem & Chem Engn, Hefei 230039, Peoples R China
[2] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[3] Univ Sci & Technol China, Dept Polymer Sci & Engn, Hefei 230026, Anhui, Peoples R China
[4] Rhodia China Co Ltd, CRTS, Ecoefficient Prod & Proc Lab E2P2L, UMI 3464, Shanghai 201108, Peoples R China
[5] Anhui Univ, Anhui Prov Key Lab Environm Friendly Polymer Mat, Hefei 230039, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
SYMMETRIC DIBLOCK COPOLYMER; PATTERNED SURFACES; MORPHOLOGY; BLENDS; NANOLITHOGRAPHY; ORIENTATION; FILMS; FIELD;
D O I
10.1021/ma301203a
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Using real-space self-consistent field theory calculations (SCFT), directed self-assembly of block copolymers was explored on sparsely nanopatterned substrates. In this study, the lamellar structure forming block copolymers are confined between two surfaces. The top surface is strictly neutral, and the bottom one is periodically patterned with neutral interspacing (nanopattern), which forms a sparsely nanopatterned substrate. The dimension of nanopatterns is commensurate with periods of lamellar structure of the block copolymers self-assembling in bulk. By systematically varying the film thickness and interspacing between nanopatterns, the density multiplication of nanopattern in the film was investigated, and a variety of nanostructures not available in bulk (nonbulk structures) were observed.
引用
收藏
页码:922 / 926
页数:5
相关论文
共 50 条
  • [31] Self-assembly of block copolymers
    Mai, Yiyong
    Eisenberg, Adi
    CHEMICAL SOCIETY REVIEWS, 2012, 41 (18) : 5969 - 5985
  • [32] Self-assembly of block copolymers
    Matsen, MW
    Schick, M
    CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, 1996, 1 (03) : 329 - 336
  • [33] Self-Assembly of Block Copolymers
    Abetz, Volker
    POLYMERS, 2020, 12 (04)
  • [34] Inverse Design of Topographical Templates for Directed Self-Assembly of Block Copolymers
    Hannon, Adam F.
    Gotrik, Kevin W.
    Ross, Caroline A.
    Alexander-Katz, Alfredo
    ACS MACRO LETTERS, 2013, 2 (03) : 251 - 255
  • [35] Square patterns formed from the directed self-assembly of block copolymers
    Li, Weihua
    Gu, Xueying
    MOLECULAR SYSTEMS DESIGN & ENGINEERING, 2021, 6 (05) : 355 - 367
  • [36] Thermal scanning probe lithography for the directed self-assembly of block copolymers
    Gottlieb, S.
    Lorenzoni, M.
    Evangelio, L.
    Fernandez-Regulez, M.
    Ryu, Y. K.
    Rawlings, C.
    Spieser, M.
    Knoll, A. W.
    Perez-Murano, F.
    NANOTECHNOLOGY, 2017, 28 (17)
  • [37] Directed self-assembly of block copolymers on chemical patterns: A platform for nanofabrication
    Ji, Shengxiang
    Wan, Lei
    Liu, Chi-Chun
    Nealey, Paul F.
    PROGRESS IN POLYMER SCIENCE, 2016, 54-55 : 76 - 127
  • [38] Directed self-assembly of silicon-containing block copolymers for lithography
    Maher, Michael
    Rettner, Charles
    Bates, Christopher
    Blachut, Gregory
    Carlson, Matthew
    Durand, William
    Cheng, Joy
    Sanders, Daniel
    Ellison, Christopher
    Willson, Carlton
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 249
  • [39] Deterministically Isolated Gratings through the Directed Self-Assembly of Block Copolymers
    Doerk, Gregory S.
    Cheng, Joy Y.
    Rettner, Charles T.
    Balakrishnan, Srinivasan
    Arellano, Noel
    Sanders, Daniel P.
    ALTERNATIVE LITHOGRAPHIC TECHNOLOGIES V, 2013, 8680
  • [40] Tuning the strength of chemical patterns for directed self-assembly of block copolymers
    Williamson, Lance
    Lin, Guanyang
    Cao, Yi
    Gronheid, Roel
    Nealey, Paul
    ALTERNATIVE LITHOGRAPHIC TECHNOLOGIES VI, 2014, 9049