Milling Parameter Optimization Based on Control of Aluminum Alloy 7475 Surface Roughness

被引:0
|
作者
Lin, Aiqin [1 ]
Zheng, Minli [1 ]
机构
[1] Haerbin Univ Sci Tech, Mech & Power Engn Coll, Haerbin 150080, Peoples R China
来源
关键词
aluminum alloy 7475; neural network; milling parameter optimize; surface roughness; PREDICTION; FINISH;
D O I
10.4028/www.scientific.net/AMR.472-475.132
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Aiming at the problems that diversity and blindness of milling parameter selection, propose a milling parameter optimization method that based on control of surface roughness by coupling neural network and annealing genetic hybrid algorithm. This method makes advantages of experimental design technique, neural network and annealing genetic hybrid algorithm. High speed milling of aluminum alloy 7475 surface roughness experiments were designed based on uniform experimental design scheme. A neural network predictive model for surface roughness was created using experimental data. The predictive model and analytical definition of material remove rate had consisted of optimization problem. It was used annealing genetic hybrid algorithm to optimize model. Proved by test,the results show that the optimal parameter can improve surface quality. This indicates that the method can accurately milling parameter optimize.
引用
收藏
页码:132 / 136
页数:5
相关论文
共 50 条
  • [41] Evaluation of Surface Roughness of Aluminum Alloy in Burnishing Process Based on Chaos Theory
    Zhipeng Yuan
    Zhenyu Zhou
    Zhiguo Jiang
    Zeyu Zhao
    Cong Ding
    Zhongyu Piao
    Chinese Journal of Mechanical Engineering, 2023, (01) : 106 - 119
  • [42] Evaluation of Surface Roughness of Aluminum Alloy in Burnishing Process Based on Chaos Theory
    Zhipeng Yuan
    Zhenyu Zhou
    Zhiguo Jiang
    Zeyu Zhao
    Cong Ding
    Zhongyu Piao
    Chinese Journal of Mechanical Engineering, 2023, 36 (01) : 106 - 119
  • [43] Investigation of surface roughness of aluminum alloy sheet based on crystalline plasticity model
    Liao, K-C.
    Chen, C-L.
    COMPUTATIONAL MATERIALS SCIENCE, 2010, 49 : S47 - S53
  • [44] Milling surface roughness for 7050 aluminum alloy cavity influenced by nozzle position of nanofluid minimum quantity lubrication
    Zhenjing DUAN
    Changhe LI
    Yanbin ZHANG
    Lan DONG
    Xiufang BAI
    Min YANG
    Dongzhou JIA
    Runze LI
    Huajun CAO
    Xuefeng XU
    Chinese Journal of Aeronautics, 2021, 34 (06) : 33 - 53
  • [45] Milling surface roughness for 7050 aluminum alloy cavity influenced by nozzle position of nanofluid minimum quantity lubrication
    Duan, Zhenjing
    Li, Changhe
    Zhang, Yanbin
    Dong, Lan
    Bai, Xiufang
    Yang, Min
    Jia, Dongzhou
    Li, Runzhe
    Cao, Huajun
    Xu, Xuafeng
    CHINESE JOURNAL OF AERONAUTICS, 2021, 34 (06) : 33 - 53
  • [46] The Optimization of Cutting Parameters for Surface Roughness in High Speed Milling based on Taguchi Method
    Li, Pengnan
    Chen, Ming
    Kang, Xiaojian
    Zhang, Lina
    Zhou, Ming
    HIGH SPEED MACHINING V, 2012, 723 : 196 - +
  • [47] Process parameter interval sensitivity and optimization of machined surface roughness for high-speed milling of titanium alloys
    Tian, Rongxin
    Yao, Changfeng
    Huang, Xinchun
    Ren, Junxue
    Zhang, Dinghua
    Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2010, 31 (12): : 2464 - 2470
  • [48] Surface Roughness of AlMn1Cu and cutting parameter optimization in high-speed end milling
    Wang, Zhen-Hua
    Zhao, Cheng-Gang
    Yuan, Jun-Tang
    Hu, Xiao-Qiu
    Deng, Wen
    Nanjing Li Gong Daxue Xuebao/Journal of Nanjing University of Science and Technology, 2010, 34 (04): : 537 - 542
  • [49] Surface roughness prediction in milling of aluminum alloys: an integrated model.
    El Ouafi, A.
    Barka, N.
    REVUE DE METALLURGIE-CAHIERS D INFORMATIONS TECHNIQUES, 2011, 108 (06): : 357 - 368
  • [50] Optimization of cutting conditions for surface roughness in CNC end milling
    Kantheti Venkata Murali Krishnam Raju
    Gink Ranga Janardhana
    Podaralla Nanda Kumar
    Vanapalli Durga Prasada Rao
    International Journal of Precision Engineering and Manufacturing, 2011, 12 : 383 - 391