An inverse theorem for the Gowers Us+1[N]-norm

被引:130
|
作者
Green, Ben [1 ]
Tao, Terence [2 ]
Ziegler, Tamar [3 ]
机构
[1] Ctr Math Sci, Cambridge, England
[2] Univ Calif Los Angeles, Los Angeles, CA USA
[3] Technion Israel Inst Technol, Haifa, Israel
关键词
POLYNOMIAL-SEQUENCES; UNIFORM-DISTRIBUTION; MULTIPLE RECURRENCE; ERGODIC AVERAGES; CONVERGENCE; EQUATIONS; SZEMEREDI; BEHAVIOR; VALUES; PROOF;
D O I
10.4007/annals.2012.176.2.11
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the inverse conjecture for the Gowers Us+1[N]-norm for all s >= 1; this is new for s >= 4. More precisely, we establish that if f : [N] -> [-1, 1] is a function with parallel to f parallel to(Us+1) ([N]) >= delta, then there is a bounded-complexity s-step nilsequence F(g(n)Gamma) that correlates with f, where the bounds on the complexity and correlation depend only on s and delta. From previous results, this conjecture implies the Hardy-Littlewood prime tuples conjecture for any linear system of finite complexity.
引用
收藏
页码:1231 / 1372
页数:142
相关论文
共 50 条
  • [21] Inverse 1-median Problem on Trees under Weighted l∞ Norm
    Guan, Xiucui
    Zhang, Binwu
    ALGORITHMIC ASPECTS IN INFORMATION AND MANAGEMENT, 2010, 6124 : 150 - +
  • [22] Uniform bounds on the 1-norm of the inverse of lower triangular Toeplitz matrices
    Liu, X.
    McKee, S.
    Yuan, J. Y.
    Yuan, Y. X.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (05) : 1157 - 1170
  • [23] Infinity Norm Bounds for the Inverse of SDD1-Type Matrices with Applications
    Geng, Yuanjie
    Zhu, Yuxue
    Zhang, Fude
    Wang, Feng
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2025,
  • [24] Infinity norm bounds for the inverse of S DD+1 matrices with applications
    Liu, Lanlan
    Zhu, Yuxue
    Wang, Feng
    Geng, Yuanjie
    AIMS MATHEMATICS, 2024, 9 (08): : 21294 - 21320
  • [25] Infinity norm upper bounds for the inverse of S DD1 matrices
    Chen, Xiaoyong
    Li, Yating
    Liu, Liang
    Wang, Yaqiang
    AIMS MATHEMATICS, 2022, 7 (05): : 8847 - 8860
  • [26] Inverse semidefinite quadratic programming problem with l1 norm measure
    Li, Lidan
    Zhang, Liwei
    Zhang, Hongwei
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 376
  • [27] On the (m, n)-clock problem and the ℓ∞-ℓ1 norm of a matrix
    Chattopadhyay, Chandrodoy
    Mandal, Kalidas
    Sain, Debmalya
    ADVANCES IN OPERATOR THEORY, 2025, 10 (01)
  • [29] THE BOUNDARY MORERA THEOREM FOR DOMAIN τ+ (n - 1)
    Khudayberganov, G.
    Abdullayev, J. Sh
    UFA MATHEMATICAL JOURNAL, 2021, 13 (03): : 191 - 205
  • [30] Infinity norm bounds for the inverse for GSDD1 matrices using scaling matrices
    Dai, Ping-Fan
    Li, Jinping
    Zhao, Shaoyu
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (03):