Relating Boolean gate truth tables to one-way functions

被引:4
|
作者
Gomathisankaran, Mahadevan [1 ]
Tyagi, Akhilesh [2 ]
机构
[1] Princeton Univ, Princeton, NJ 08544 USA
[2] Iowa State Univ, Ames, IA USA
来源
2008 IEEE INTERNATIONAL CONFERENCE ON ELECTRO/INFORMATION TECHNOLOGY | 2008年
关键词
D O I
10.1109/EIT.2008.4554258
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We present a schema to build one way functions from a family of Boolean gates. Moreover, we relate characteristics of these Boolean gate truth tables to properties of the derived one-way functions. We believe this to be the first attempt at establishing cryptographic properties from the Boolean cube spaces of the component gates. This schema is then used to build a family of compression functions, which in turn can be used to get block encryption and hash functions. These functions are based on reconfigurable gates. We prove cryptographically relevant properties for these function implementations. Various applications incorporating these one-way functions, specifically memory integrity in processor architecture, are presented.
引用
收藏
页码:1 / +
页数:2
相关论文
共 50 条
  • [21] ONE-WAY FUNCTIONS AND THE ISOMORPHISM CONJECTURE
    GANESAN, K
    THEORETICAL COMPUTER SCIENCE, 1994, 129 (02) : 309 - 321
  • [22] SYMMETRY OF INFORMATION AND ONE-WAY FUNCTIONS
    LONGPRE, L
    MOCAS, S
    INFORMATION PROCESSING LETTERS, 1993, 46 (02) : 95 - 100
  • [23] Kolmogorov One-Way Functions Revisited
    Casal, Filipe
    Rasga, Joao
    Souto, Andre
    CRYPTOGRAPHY, 2018, 2 (02) : 1 - 12
  • [24] On hardness amplification of one-way functions
    Lin, H
    Trevisan, L
    Wee, H
    THEORY OF CRYPTOGRAPHY, PROCEEDINGS, 2005, 3378 : 34 - 49
  • [25] Extractable perfectly one-way functions
    Canetti, Ran
    Dakdouk, Ronny Ramzi
    AUTOMATA, LANGUAGES AND PROGRAMMING, PT 2, PROCEEDINGS, 2008, 5126 : 449 - +
  • [26] ONE-WAY FUNCTIONS AND CIRCUIT COMPLEXITY
    BOPPANA, RB
    LAGARIAS, JC
    LECTURE NOTES IN COMPUTER SCIENCE, 1986, 223 : 51 - 65
  • [27] The existence of relativization one-way functions
    Cao, Z.
    Lü, Y.
    Shi, C.
    2001, Chinese Academy of Sciences (12):
  • [28] On One-Way Functions and Sparse Languages
    Liu, Yanyi
    Pass, Rafael
    THEORY OF CRYPTOGRAPHY, TCC 2023, PT I, 2023, 14369 : 219 - 237
  • [29] Polynomials and One-Way Functions.
    Mueller, Winfred B.
    1988, 105 (01): : 31 - 35
  • [30] Secrecy without one-way functions
    Grigoriev, Dima
    Shpilrain, Vladimir
    GROUPS COMPLEXITY CRYPTOLOGY, 2013, 5 (01) : 31 - 52