Silk implants for the healing of critical size bone defects

被引:386
|
作者
Meinel, L
Fajardo, R
Hofmann, S
Langer, R
Chen, J
Snyder, B
Vunjak-Novakovic, G
Kaplan, D
机构
[1] Tufts Univ, Dept Biomed Engn, Medford, MA 02115 USA
[2] ETH, Dept Chem & Appl Biosci, CH-8093 Zurich, Switzerland
[3] MIT, Div Hlth Sci & Technol, Cambridge, MA 02139 USA
[4] Harvard Univ, Sch Med, Beth Israel Deaconess Med Ctr, Orthopaed Biomech Lab, Boston, MA 02215 USA
[5] Tufts Univ, Div Oral Biol, Boston, MA 02111 USA
关键词
silk; stem cells; bone; fibroin; cranium; calvarial;
D O I
10.1016/j.bone.2005.06.010
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Bone (re)-generation and bone fixation strategies utilize biomaterial implants, which are gradually replaced by autologous tissues. Ideally, these biomaterials should be biodegradable, osteoconductive, and provide mechanical strength and integrity until newly formed host tissues can maintain function. Some protein-based biomaterials such as collagens are promising because of their biological similarities to natural proteins on bone surfaces. However, their use as bone implant materials is largely hampered by poor mechanical properties. In contrast, silks offer distinguishing mechanical properties that are tailorable, along with slow degradability to permit adequate time for remodeling. To assess the suitability of silk-based biomaterials as implants for bone healing, we explored the use of novel porous silk fibroin scaffolds as templates for the engineering of bone tissues starting from human bone marrow derived stem cells cultured under osteogenic conditions for up to 5 weeks. The slowly degrading protein matrix permitted adequate temporal control of hydroxyapatite deposition and resulted in the formation of a trabecular-like bone matrix in bioreactor studies. The organic and inorganic components of the engineered bone tissues resembled those of bone, as shown by gene expression analysis, biochemical assays, and X-ray diffractometry. Implantation of the tissue-engineered bone implants (grown in bioreactors for 5 weeks prior to implantation) into calvarial critical size defects in mice demonstrated the capacity of these systems to induce advanced bone formation within 5 weeks, whereas the implantation of stem cell loaded silk scaffolds, and scaffolds alone resulted in less bone formation. These results demonstrate the feasibility of silk-based implants with engineered bone for the (re-)generation of bone tissues and expand the class of protein-based bone-implant materials with a mechanically stable and durable option. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:688 / 698
页数:11
相关论文
共 50 条
  • [11] Radiological and Stereological Evaluation of the Effect of Rifampin on Bone Healing in Critical-Size Defects
    Durmuslar, Mustafa Cenk
    Balli, Umut
    Turer, Akif
    Onger, Mehmet E.
    Celik, Hakan H.
    JOURNAL OF CRANIOFACIAL SURGERY, 2016, 27 (06) : 1481 - 1485
  • [12] Reindeer BMP extract in the healing of critical-size bone defects in the radius of the rabbit
    Pekkarinen, Tarmo
    Jamsa, Timo
    Maatta, Mikko
    Hietala, Oili
    Jalovaara, Pekka
    ACTA ORTHOPAEDICA, 2006, 77 (06) : 952 - 959
  • [13] Bone Healing Evaluation in Critical-Size Defects Treated With Xenogenous Bone Plus Porcine Collagen
    Maciel, Juceleia
    Correa Momesso, Gustavo Antonio
    Ramalho-Ferreira, Gabriel
    Consolaro, Renata Bianco
    Perri de Carvalho, Paulo Sergio
    Faverani, Leonardo Perez
    Farnezi Bassi, Ana Paula
    IMPLANT DENTISTRY, 2017, 26 (02) : 296 - 302
  • [14] DESIGNING MICROTISSUE BIOASSEMBLIES FOR SKELETAL REGENERATION: HEALING CRITICAL SIZE LONG BONE DEFECTS
    Hall, G. Nilsson
    Mendes, L.
    Geris, L.
    Papantoniou, I.
    Luyten, F.
    CYTOTHERAPY, 2018, 20 (05) : S14 - S14
  • [15] Injectable reactive biocomposites for bone healing in critical-size rabbit calvarial defects
    Dumas, Jerald E.
    BrownBaer, Pamela B.
    Prieto, Edna M.
    Guda, Teja
    Hale, Robert G.
    Wenke, Joseph C.
    Guelcher, Scott A.
    BIOMEDICAL MATERIALS, 2012, 7 (02)
  • [16] Preclinical induced membrane model to evaluate synthetic implants for healing critical bone defects without autograft
    DeBaun, Malcolm R.
    Stahl, Alexander M.
    Daoud, Adam I.
    Pan, Chi-Chun
    Bishop, Julius A.
    Gardner, Michael J.
    Yang, Yunzhi P.
    JOURNAL OF ORTHOPAEDIC RESEARCH, 2019, 37 (01) : 60 - 68
  • [17] Effect of platelet-rich plasma on bone healing of autogenous bone grafts in critical-size defects
    Nagata, Maria J. H.
    Melo, Luiz. G. N.
    Messora, Michel R.
    Bomfim, Suely R. M.
    Fucini, Stephen E.
    Garcia, Valdir G.
    Bosco, Alvaro F.
    Okamoto, Tetuo
    JOURNAL OF CLINICAL PERIODONTOLOGY, 2009, 36 (09) : 775 - 783
  • [18] Association of hyaluronic acid with a collagen scaffold may improve bone healing in critical-size bone defects
    Bezerra, Beatriz de Brito
    Mendes Brazao, Mariana Amade
    Gomes de Campos, Mirella Lindoso
    Casati, Marcio Zaffalon
    Sallum, Enilson Antonio
    Sallum, Antonio Wilson
    CLINICAL ORAL IMPLANTS RESEARCH, 2012, 23 (08) : 938 - 942
  • [19] Role of periosteum during healing of alveolar critical size bone defects in the mandible: a pilot study
    Lucas T. Duong
    Stéphane Petit
    Stéphane Kerner
    Mélodie M. Clerc
    Christophe Arnoult
    Nunthawan Nowwarote
    Thanaphum Osathanon
    Benjamin P. J. Fournier
    Juliane Isaac
    François C. Ferré
    Clinical Oral Investigations, 2023, 27 : 4541 - 4552
  • [20] Role of periosteum during healing of alveolar critical size bone defects in the mandible: a pilot study
    Duong, Lucas T.
    Petit, Stephane
    Kerner, Stephane
    Clerc, Melodie M.
    Arnoult, Christophe
    Nowwarote, Nunthawan
    Osathanon, Thanaphum
    Fournier, Benjamin P. J.
    Isaac, Juliane
    Ferre, Francois C.
    CLINICAL ORAL INVESTIGATIONS, 2023, 27 (08) : 4541 - 4552