TOWARDS A GLOBAL FLOOD FREQUENCY MAP FROM SAR DATA

被引:0
|
作者
Pelich, Ramona [1 ]
Chini, Marco [1 ]
Hostache, Renaud [1 ]
Matgen, Patrick [1 ]
Delgado, Jose Manuel [2 ,3 ]
Sabatino, Giovanni [2 ,3 ]
机构
[1] LIST, Environm Res & Innovat Dept, Luxembourg, Luxembourg
[2] Progress Syst Srl, Parco Sci Tor Vergata, I-00133 Rome, Italy
[3] ESA Res & Serv Support, Via Galileo Galilei 1, I-00044 Frascati, Italy
关键词
automatic flood extent delineation; flood frequency; global map; HAND-index; SAR archive;
D O I
暂无
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The main objective of this study is to generate inundation maps of past flood events based on an archive of Synthetic Aperture Radar (SAR) data. Within a hierarchical image splitting framework, the flood mapping algorithm uses a histogram thresholding operation and a region growing process to delineate the flood extent. This algorithm is applied to an archive of SAR images in order to generate a flood frequency map. We define the flood frequency of a specific area as the ratio between the number of images where the area was detected as flooded and the total number of images within the employed data collection. SAR water-like ambiguities (e.g. urban areas, crops or shadow regions) are filtered out using auxiliary data sources such as the Height Above Nearest Drainage (HAND) index or land cover maps. The proposed methodology is applied to an ENVISAT ASAR image archive over the UK area. Results presented in this article demonstrate the effectiveness of this methodology.
引用
收藏
页码:4024 / 4027
页数:4
相关论文
共 50 条
  • [41] Using Multimodal Data and AI to Dynamically Map Flood Risk
    Bryan-Smith, Lydia
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 12874 - 12875
  • [42] MULTI-FREQUENCY SAR DATA FOR AGRICULTURE
    Mattia, Francesco
    Balenzano, Anna
    Satalino, Giuseppe
    Lovergine, Francesco
    D'Addabbo, Annarita
    Palmisano, Davide
    Grassi, Riccardo
    Nutini, Francesco
    Boschetti, Mirco
    Verza, Georgia
    Rinaldi, Michele
    Ruggieri, Sergio
    De Santis, Angelo Pio
    Paredes Gomez, Vanessa
    Nafria Garcia, David Alfonso
    Tapete, Deodato
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 5176 - 5179
  • [43] SAR raw data simulation in the frequency domain
    Khwaja, A. S.
    Ferro-Famil, L.
    Pottier, E.
    2006 EUROPEAN RADAR CONFERENCE, 2006, : 277 - +
  • [44] Multi frequency polarimetric sar data classification
    Ferro-Famil, Laurent
    Pottier, Eric
    2001, Springer Science and Business Media Deutschland GmbH (56): : 9 - 10
  • [45] Spectral analysis of high frequency SAR data
    Mitra, AK
    Lewis, TL
    ALGORITHMS FOR SYNTHETIC APERTURE RADAR IMAGERY VIII, 2001, 4382 : 212 - 220
  • [46] Multi frequency polarimetric SAR data classification
    Ferro-Famil, L
    Pottier, E
    ANNALES DES TELECOMMUNICATIONS-ANNALS OF TELECOMMUNICATIONS, 2001, 56 (9-10): : 510 - 522
  • [47] Data processing in Frequency imaging of Circular SAR
    Liu, Gaogao
    Wu, Bing
    Qin, Guodong
    Cai, Jingjing
    Bao, Dan
    2015 IEEE 5TH ASIA-PACIFIC CONFERENCE ON SYNTHETIC APERTURE RADAR (APSAR), 2015, : 156 - 160
  • [48] Flood risk map from hydrological and mobility data: A case study in Sao Paulo (Brazil)
    Tomas, Livia Rodrigues
    Soares, Giovanni Guarnieri
    Jorge, Aurelienne A. S.
    Mendes, Jeferson Feitosa
    Freitas, Vander L. S.
    Santos, Leonardo B. L.
    TRANSACTIONS IN GIS, 2022, 26 (05) : 2341 - 2365
  • [49] Regional flood frequency analysis for flood index estimation in hydrologic regions with limited flood data
    Younis, Abdulwahab M.
    4TH INTERNATIONAL CONFERENCE ON BUILDINGS, CONSTRUCTION AND ENVIRONMENTAL ENGINEERING, 2020, 737
  • [50] Surface parameters retrieval from polarimetric and multi-frequency SAR data
    Allain, S
    Ferro-Famil, L
    Pottier, E
    IGARSS 2003: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS I - VII, PROCEEDINGS: LEARNING FROM EARTH'S SHAPES AND SIZES, 2003, : 1417 - 1419