Reaction-diffusion model for the growth of avascular tumor

被引:0
|
作者
Ferreira, SC
Martins, ML
Vilela, MJ
机构
[1] Univ Fed Minas Gerais, Dept Fis, Inst Ciencias Exatas, BR-30161970 Belo Horizonte, MG, Brazil
[2] Univ Fed Vicosa, Dept Fis, BR-36751000 Vicosa, MG, Brazil
[3] Univ Fed Vicosa, Dept Biol Anim, BR-36751000 Vicosa, MG, Brazil
来源
PHYSICAL REVIEW E | 2002年 / 65卷 / 02期
关键词
D O I
暂无
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A nutrient-limited model for avascular cancer growth including cell proliferation, motility, and death is presented. The model qualitatively reproduces commonly observed morphologies for primary tumors, and the simulated patterns are characterized by its gyration radius, total number of cancer cells, and number of cells on tumor periphery. These very distinct morphological patterns follow Gompertz growth curves, but exhibit different scaling laws for their surfaces. Also, the simulated tumors incorporate a spatial structure composed of a central necrotic core, an inner rim of quiescent cells and a narrow outer shell of proliferating cells in agreement with biological data. Finally, our results indicate that the competition for nutrients among normal and cancer cells may be a determining factor in generating papillary tumor morphology.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] A SOLVABLE NONLINEAR REACTION-DIFFUSION MODEL
    HONGLER, MO
    LIMA, R
    PHYSICS LETTERS A, 1995, 198 (02) : 100 - 104
  • [32] Branching morphogenesis in a reaction-diffusion model
    Fleury, Vincent
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2000, 61 (04): : 4156 - 4160
  • [33] STABILITY IN A REACTION-DIFFUSION MODEL OF MUTUALISM
    HUTSON, V
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1986, 17 (01) : 58 - 66
  • [34] Branching morphogenesis in a reaction-diffusion model
    Fleury, V
    PHYSICAL REVIEW E, 2000, 61 (04): : 4156 - 4160
  • [35] Reaction-diffusion model of atherosclerosis development
    El Khatib, N.
    Genieys, S.
    Kazmierczak, B.
    Volpert, V.
    JOURNAL OF MATHEMATICAL BIOLOGY, 2012, 65 (02) : 349 - 374
  • [36] Stability analysis and simulations of tumor growth model based on system of reaction-diffusion equation in two-dimensions
    Alabdrabalnabi, Ali Sadiq
    Ali, Ishtiaq
    AIMS MATHEMATICS, 2024, 9 (05): : 11560 - 11579
  • [37] On a nonlocal reaction-diffusion population model
    Deng, Keng
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2008, 9 (01): : 65 - 73
  • [38] LARGE DEVIATIONS FOR A REACTION-DIFFUSION MODEL
    JONALASINIO, G
    LANDIM, C
    VARES, ME
    PROBABILITY THEORY AND RELATED FIELDS, 1993, 97 (03) : 339 - 361
  • [39] CLT for NESS of a reaction-diffusion model
    Goncalves, P.
    Jara, M.
    Marinho, R.
    Menezes, O.
    PROBABILITY THEORY AND RELATED FIELDS, 2024, 190 (1-2) : 337 - 377
  • [40] Radial evolution in a reaction-diffusion model
    Silveira, Sofia M.
    Alves, Sidiney G.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2024, 2024 (02):