A Prospective Observational Study of Clinical Acceptability of Deep Learning Model for the Automated Segmentation of Organs at Risk for Head and Neck Radiotherapy Treatment Planning

被引:0
|
作者
Lucido, J. [1 ]
DeWees, T. A. [2 ]
Leavitt, T. [3 ]
Anand, A. [4 ]
Beltran, C. [5 ]
Brooke, M. [6 ]
Buroker, J. [7 ]
Foote, R. L. [8 ]
Foss, O. R. [1 ]
Hughes, C. O. [6 ]
Hunzeker, A. [5 ]
Laack, N. N., II [5 ]
Lenz, T. [9 ]
Morigami, M. [6 ]
Moseley, D. J. [5 ]
Patel, Y. [6 ]
Tryggestad, E. J. [5 ]
Wilson, M. Z. [6 ]
Zverovitch, A. [6 ]
Patel, S. H. [10 ]
机构
[1] Mayo Clin, Rochester, MN USA
[2] Mayo Clin, Scottsdale, AZ USA
[3] Mayo Clin, Dept Quantitat Hlth Sci, Scottsdale, AZ USA
[4] Mayo Clin, Dept Radiat Oncol, Phoenix, AZ USA
[5] Mayo Clin, Dept Radiat Oncol, Rochester, MN USA
[6] Google Hlth, Mountain View, CA USA
[7] Mayo Clin Rochester, Rochester, MN USA
[8] Mayo Clin Rochester, Dept Radiat Oncol, Rochester, MN USA
[9] Mayo Clin, Rochester Campus, Rochester, MN USA
[10] Mayo Clin Arizona, Dept Radiat Oncol, Phoenix, AZ USA
关键词
D O I
暂无
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
2267
引用
收藏
页码:E121 / E121
页数:1
相关论文
共 50 条
  • [41] FDG-PET in radiotherapy treatment planning of advanced head and neck cancer -: A prospective clinical analysis
    Dietl, Barbara
    Marienhagen, Jorg
    Kuehnel, Thomas
    Schaefer, Christof
    Koelbl, Oliver
    AURIS NASUS LARYNX, 2006, 33 (03) : 303 - 309
  • [42] Auto-segmentation of head and neck organs at risk in radiotherapy and its dependence on anatomic similarity
    Ayyalusamy, Anantharaman
    Vellaiyan, Subramani
    Subramanian, Shanmuga
    Ilamurugu, Arivarasan
    Satpathy, Shyama
    Nauman, Mohammed
    Katta, Gowtham
    Madineni, Aneesha
    RADIATION ONCOLOGY JOURNAL, 2019, 37 (02): : 134 - 142
  • [43] Challenges and chances for deep-learning based target and organ at risk segmentation in radiotherapy of head and neck cancer
    Nijkamp, Jasper
    PHYSICS & IMAGING IN RADIATION ONCOLOGY, 2022, 23 : 150 - 152
  • [44] Improving automatic delineation for head and neck organs at risk by Deep Learning Contouring
    van Dijk, Lisanne V.
    Van den Bosch, Lisa
    Aljabar, Paul
    Peressutti, Devis
    Both, Stefan
    Steenbakkers, Roel. J. H. M.
    Langendijk, Johannes A.
    Gooding, Mark J.
    Brouwer, Charlotte L.
    RADIOTHERAPY AND ONCOLOGY, 2020, 142 : 115 - 123
  • [45] Deep-learning-based detection and segmentation of organs at risk in nasopharyngeal carcinoma computed tomographic images for radiotherapy planning
    Shujun Liang
    Fan Tang
    Xia Huang
    Kaifan Yang
    Tao Zhong
    Runyue Hu
    Shangqing Liu
    Xinrui Yuan
    Yu Zhang
    European Radiology, 2019, 29 : 1961 - 1967
  • [46] Deep-learning-based detection and segmentation of organs at risk in nasopharyngeal carcinoma computed tomographic images for radiotherapy planning
    Liang, Shujun
    Tang, Fan
    Huang, Xia
    Yang, Kaifan
    Zhong, Tao
    Hu, Runyue
    Liu, Shangqing
    Yuan, Xinrui
    Zhang, Yu
    EUROPEAN RADIOLOGY, 2019, 29 (04) : 1961 - 1967
  • [47] Deep Learning for Head and Neck Segmentation in MR: A Tool for the MR-Guided Radiotherapy
    Anderson, B.
    Elsohari, B.
    Cardenas, C.
    Mohamed, A.
    Yang, P.
    Fuller, C.
    Chung, C.
    Brock, K.
    MEDICAL PHYSICS, 2018, 45 (06) : E634 - E634
  • [48] Towards interactive deep-learning for tumour segmentation in head and neck cancer radiotherapy
    Wei, Zixiang
    Ren, Jintao
    Korreman, Stine Sofia
    Nijkamp, Jasper
    PHYSICS & IMAGING IN RADIATION ONCOLOGY, 2023, 25
  • [49] Validation of a deep-learning segmentation model for adult and pediatric head and neck radiotherapy in different patient positions
    Chen, Linda
    Platzer, Patricia
    Reschl, Christian
    Schafasand, Mansure
    Nachankar, Ankita
    Hajdusich, Christoph Lukas
    Kuess, Peter
    Stock, Markus
    Habraken, Steven
    Carlino, Antonio
    PHYSICS & IMAGING IN RADIATION ONCOLOGY, 2024, 29
  • [50] Clinical evaluation of a deep learning based auto-segmentation model for intracranial organs at risk
    Poel, Robert
    Ruefenacht, Elias
    Fix, Michael
    Scheib, Stefan
    Reyes, Mauricio
    Ermis, Ekin
    RADIOTHERAPY AND ONCOLOGY, 2024, 194 : S821 - S822