Room-temperature synthesis of cyan CsPb(Cl/Br)3/SiO2 nanospheres with LiCl-H2O solution

被引:2
|
作者
Cao, Peiyuan [1 ]
Yang, Bobo [1 ,2 ]
Cao, Yanrong [3 ]
Zheng, Fei [1 ]
Zou, Jun [1 ,4 ]
机构
[1] Shanghai Inst Technol, Sch Sci, Shanghai 201418, Peoples R China
[2] Fudan Univ, Acad Engn & Technol, Inst Future Lighting, Shanghai 200433, Peoples R China
[3] Shanghai Inst Technol, Sch Mat Sci & Engn, Shanghai 201418, Peoples R China
[4] Wenzhou Univ, Inst New Mat & Ind Technol, Wenzhou 325024, Peoples R China
关键词
quantum dots; silicon dioxide; CsPb(Cl/Br)(3); lithium chloride; cyan; PEROVSKITE QUANTUM DOTS; LIGHT-EMITTING-DIODES; NANOCRYSTALS; EFFICIENT; EMISSION; MANGANESE;
D O I
10.3788/COL202018.071601
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
There are many strategies to maintain the excellent photoluminescence (PL) characteristics of perovskite quantum dots (QDs). Here, we proposed a facile and effective method to prepare cyan CsPb(Cl/Br)(3)/SiO2 nano-spheres at room temperature. Cubic CsPb(Cl/Br)(3) was obtained by adding a LiCl-H2O solution and anion exchange reaction. With (3-aminopropyl)triethoxysilane as an auxiliary agent, a QDs/SiO2 composite was extracted from a sol-gel solution by precipitate-encapsulation method. The transmission electron microscopy images and Fourier transform infrared spectra indicated the QDs were indeed embedded in silica substances. Besides, humidity stability and thermal stability show the composite possesses a great application value. Finally, cyan QDs@SiO2 powder has a high PL quantum yield of up to 84%; the stable cyan fluorescent powder does have great potential to play a key role in commercial full spectrum display.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Glucose biosensor based on the room-temperature phosphorescence of TiO2/SiO2 nanocomposite
    Li, Yang
    Liu, Xiaoyan
    Yuan, Hongyan
    Xiao, Dan
    BIOSENSORS & BIOELECTRONICS, 2009, 24 (12): : 3706 - 3710
  • [42] THERMODYNAMICS OF MIXED ELECTROLYTE SOLUTIONS .13. HEATS OF MIXING OF LINO3-H2O,LICL-H2O,NANO3-H2O AND KNO3-H2O WITH NI(NO3)2-H2O SOLUTION
    KARAPETYANTS, MK
    LEBEDEVA, AP
    VLASENKO, KK
    ZHURNAL FIZICHESKOI KHIMII, 1973, 47 (12): : 3050 - 3053
  • [43] Highly intense room-temperature photoluminescence in V2O5 nanospheres
    Le, Top Khac
    Kang, Manil
    Han, Sang Wook
    Kim, Sok Won
    RSC ADVANCES, 2018, 8 (72): : 41317 - 41322
  • [44] Room-temperature synthesis of χ-Al2O3 and ruby (α-Cr:Al2O3)
    Cortes-Vega, Fernando D.
    Yang, Wenli
    Zarate-Medina, J.
    Brankovic, Stanko R.
    Herrera Ramirez, Jose M.
    Hernandez, Francisco C. Robles
    CRYSTENGCOMM, 2018, 20 (25): : 3505 - 3511
  • [45] Optimum Heat Source Temperature and Performance Comparison of LiCl-H2O and LiBr-H2O Type Solar Cooling System
    Pandya, Bhargav
    Kumar, Vinay
    Patel, Jatin
    Matawala, V. K.
    JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2018, 140 (05):
  • [46] Highly Sensitive Room-Temperature NO2 Gas Sensors Based on Three-Dimensional Multiwalled Carbon Nanotube Networks on SiO2 Nanospheres
    Ma, Defu
    Su, Yanjie
    Tian, Tian
    Yin, Huan
    Huo, Tingting
    Shao, Feng
    Yang, Zhi
    Hu, Nantao
    Zhang, Yafei
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (37) : 13915 - 13923
  • [47] THERMODYNAMIC STUDY OF SURFACE-LAYERS OF LIQUID SOLUTIONS .6. SYSTEMS LICL-H2O AND NH4CL-H2O
    FAKTOR, EA
    RUSANOV, AI
    KOLLOIDNYI ZHURNAL, 1973, 35 (06): : 1117 - 1122
  • [48] Solution phase synthesis of hollow SnO2 nanospheres at room temperature
    Cao, QH
    Gao, YQ
    Chen, XY
    Mu, L
    Yu, WC
    Qian, YT
    CHEMISTRY LETTERS, 2006, 35 (02) : 178 - 179
  • [49] Prediction of room-temperature antiferromagnetism in V2CT2 (T = Cl, Br, I) MXenes
    Luo, Kan
    Kong, Xianghua
    Du, Shiyu
    Guo, Hong
    JOURNAL OF MATERIALS CHEMISTRY C, 2025, 13 (15) : 7634 - 7642
  • [50] Room-temperature ferromagnetism of 2H-SiC-α-Al2O3 solid solution nanowires and the physical origin
    Sun, Yong
    Lu, Cheng
    Cui, Hao
    Wang, Jing
    Ma, Yanming
    Wang, Chengxin
    NANOSCALE, 2015, 7 (11) : 4912 - 4919