Chemical Vapor Deposition-Derived Graphene with Electrical Performance of Exfoliated Graphene

被引:346
|
作者
Petrone, Nicholas [1 ]
Dean, Cory R. [1 ,2 ]
Meric, Inanc [2 ]
van der Zande, Arend M. [1 ]
Huang, Pinshane Y. [3 ]
Wang, Lei [1 ]
Muller, David [3 ,4 ]
Shepard, Kenneth L. [2 ]
Hone, James [1 ]
机构
[1] Columbia Univ, Dept Mech Engn, New York, NY 10027 USA
[2] Columbia Univ, Dept Elect Engn, New York, NY 10027 USA
[3] Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14853 USA
[4] Cornell Univ, Kavli Inst, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
Graphene; CVD; boron nitride; grain; mobility; HIGH-QUALITY; FILMS;
D O I
10.1021/nl204481s
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
While chemical vapor deposition (CVD) promises a scalable method to produce large-area graphene, CVD-grown graphene has heretofore exhibited inferior electronic properties in comparison with exfoliated samples. Here we test the electrical transport properties of CVD-grown graphene in which two important sources of disorder, namely grain boundaries and processing-induced contamination, are substantially reduced. We grow CVD graphene with grain sizes up to 250 mu m to abate grain boundaries, and we transfer graphene utilizing a novel, dry-transfer method to minimize chemical contamination. We fabricate devices on both silicon dioxide and hexagonal boron nitride (h-BN) dielectrics to probe the effects of substrate-induced disorder. On both substrate types, the large-grain CVD graphene samples are comparable in quality to the best reported exfoliated samples, as determined by low-temperature electrical transport and magnetotransport measurements. Small-grain samples exhibit much greater variation in quality and inferior performance by multiple measures, even in samples exhibiting high field-effect mobility. These results confirm the possibility of achieving high-performance graphene devices based on a scalable synthesis process.
引用
收藏
页码:2751 / 2756
页数:6
相关论文
共 50 条
  • [21] Precise synthesis of graphene by chemical vapor deposition
    Liu, Bing
    Ma, Siguang
    NANOSCALE, 2024, 16 (09) : 4407 - 4433
  • [22] Growth of graphene underlayers by chemical vapor deposition
    Fabiane, Mopeli
    Khamlich, Saleh
    Bello, Abdulhakeem
    Dangbegnon, Julien
    Momodu, Damilola
    Johnson, A. T. Charlie
    Manyala, Ncholu
    AIP ADVANCES, 2013, 3 (11):
  • [23] Graphene Epitaxy by Chemical Vapor Deposition on SiC
    Strupinski, W.
    Grodecki, K.
    Wysmolek, A.
    Stepniewski, R.
    Szkopek, T.
    Gaskell, P. E.
    Grueneis, A.
    Haberer, D.
    Bozek, R.
    Krupka, J.
    Baranowski, J. M.
    NANO LETTERS, 2011, 11 (04) : 1786 - 1791
  • [24] Chemical vapor deposition synthesis of graphene films
    Qing, Fangzhu
    Hou, Yuting
    Stehle, Richard
    Li, Xuesong
    APL MATERIALS, 2019, 7 (02):
  • [25] Chemical vapor deposition growth behavior of graphene
    Jie Wang
    Tengfei Fan
    Jianchen Lu
    Xiaoming Cai
    Lei Gao
    Jinming Cai
    International Journal of Minerals, Metallurgy and Materials, 2022, 29 : 136 - 143
  • [26] Chemical vapor deposition growth behavior of graphene
    Jie Wang
    Tengfei Fan
    Jianchen Lu
    Xiaoming Cai
    Lei Gao
    Jinming Cai
    International Journal of Minerals Metallurgy and Materials, 2022, 29 (01) : 136 - 143
  • [27] Graphene growth using chemical vapor deposition
    Fleming, Jane
    Kelly, Michelle
    Xing, Huili
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2010, 240
  • [28] Chemical vapor deposition growth behavior of graphene
    Wang, Jie
    Fan, Tengfei
    Lu, Jianchen
    Cai, Xiaoming
    Gao, Lei
    Cai, Jinming
    INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS, 2022, 29 (01) : 136 - 143
  • [29] Electrical conductivity of copper graphene composite films synthesized by electrochemical deposition with exfoliated graphene platelets
    Jagannadham, Kasichainula
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2012, 30 (03):
  • [30] Invisible vapor catalysis in graphene growth by chemical vapor deposition
    Sun, Xiucai
    Liu, Xiaoting
    Sun, Zhongti
    Zhang, Xintong
    Wu, Yuzhu
    Zhu, Yeshu
    Song, Yuqing
    Jia, Kaicheng
    Zhang, Jincan
    Sun, Luzhao
    Yin, Wan-Jian
    Liu, Zhongfan
    NANO RESEARCH, 2024, 17 (05) : 4259 - 4269