An instability theorem for a class of eighth-order differential equations

被引:4
|
作者
Tunç, C [1 ]
Tunç, E
机构
[1] Yuzuncu Yil Univ, Van, Turkey
[2] Gaziosmanpasa Univ, Tokat, Turkey
关键词
Differential Equation; Partial Differential Equation; Ordinary Differential Equation; Functional Equation; Instability Theorem;
D O I
10.1134/S0012266106010149
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:150 / 154
页数:5
相关论文
共 50 条
  • [41] Compact Eighth-Order Microstrip Filtering Coupler
    Lin, Chun-Hung
    Kuo, Jen-Tsai
    2017 IEEE ASIA PACIFIC MICROWAVE CONFERENCE (APMC), 2017, : 806 - 808
  • [42] A NEW OPTIMAL EIGHTH-ORDER ITERATIVE TECHNIQUE FOR SOLVING SIMPLE ROOTS OF NONLINEAR EQUATIONS
    Devi, K.
    Maroju, P.
    Kalita, H.
    JOURNAL OF APPLIED AND NUMERICAL ANALYSIS, 2024, 2 : 30 - 40
  • [43] ACCELERATED HALLEY METHOD WITH EIGHTH-ORDER CONVERGENCE
    Chen, M.
    Chang, T. S.
    APPLIED AND COMPUTATIONAL MATHEMATICS, 2014, 13 (01) : 55 - 61
  • [44] Eighth-order Foldy-Wouthuysen transformation
    Jentschura, Ulrich D.
    PHYSICAL REVIEW A, 2024, 110 (01)
  • [45] VARIATION OF PARAMETERS METHOD FOR SOLVING A CLASS OF EIGHTH-ORDER BOUNDARY-VALUE PROBLEMS
    Noor, Muhammad Aslam
    Noor, Khalida Inayat
    Waheed, Asif
    Al-Said, Eisa
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2012, 9 (02)
  • [46] A General Way to Construct a New Optimal Scheme with Eighth-Order Convergence for Nonlinear Equations
    Behl, Ramandeep
    Chun, Changbum
    Alshormani, Ali Saleh
    Motsa, S. S.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2020, 17 (01)
  • [47] Regarding the accuracy of optimal eighth-order methods
    Soleymani, F.
    MATHEMATICAL AND COMPUTER MODELLING, 2011, 53 (5-6) : 1351 - 1357
  • [48] Three-step iterative methods with eighth-order convergence for solving nonlinear equations
    Bi, Weihong
    Ren, Hongmin
    Wu, Qingbiao
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 225 (01) : 105 - 112
  • [49] A new highly efficient and optimal family of eighth-order methods for solving nonlinear equations
    Behl, Ramandeep
    Argyros, Ioannis K.
    Motsa, S. S.
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 282 : 175 - 186
  • [50] Efficient Three-Step Class of Eighth-Order Multiple Root Solvers and Their Dynamics
    Alharbey, R. A.
    Kansal, Munish
    Behl, Ramandeep
    Tenreiro Machado, J. A.
    SYMMETRY-BASEL, 2019, 11 (07):