Progress in aberration-corrected high-resolution transmission electron microscopy using hardware aberration correction

被引:45
|
作者
Lentzen, Markus [1 ]
机构
[1] Res Ctr Julich, Inst Solid State Res, Ernst Ruska Ctr Microscopy & Spect Electrons, D-52425 Julich, Germany
关键词
high-resolution transmission electron microscopy; aberration measurement; aberration correction; contrast theory; phase contrast;
D O I
10.1017/S1431927606060326
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The design and construction of a double-hexapole aberration corrector has made it possible to build the prototype of a spherical-aberration corrected transmission electron microscope dedicated to high-resolution imaging on the atomic scale. The corrected instrument, a Philips CM200 FEG ST, has an information limit of better than 0.13 nm, and the spherical aberration can be varied within wide limits, even to negative values. The aberration measurement and the corrector control provide instrument alignments stable enough for materials science investigations. Analysis of the contrast transfer with the possibility of tunable spherical aberration has revealed new imaging modes: high-resolution amplitude contrast, extension of the point resolution to the information limit, and enhanced image intensity modulation for negative phase contrast. In particular, through the combination of small negative spherical aberration and small overfocus, the latter mode provides the high-resolution imaging of weakly scattering atom columns, such as oxygen, in the vicinity of strongly scattering atom columns. This article reviews further lens aberration theory, the principle of aberration correction through multipole lenses, aspects for practical work, and materials science applications.
引用
收藏
页码:191 / 205
页数:15
相关论文
共 50 条
  • [41] The first observation of titanate nanotubes by spherical aberration corrected high-resolution transmission electron microscopy
    Miao, L.
    Tanemura, S.
    Jiang, T.
    Tanemura, M.
    Yoshida, K.
    Tanaka, N.
    Xu, G.
    SUPERLATTICES AND MICROSTRUCTURES, 2009, 46 (1-2) : 357 - 364
  • [42] The first observation of carbon nanotubes by spherical aberration corrected high-resolution transmission electron microscopy
    Tanaka, N
    Yamasaki, J
    Kawai, T
    Pan, HY
    NANOTECHNOLOGY, 2004, 15 (12) : 1779 - 1784
  • [43] Progress in atomic-resolution aberration corrected conventional transmission electron microscopy (CTEM)
    Urban, Knut W.
    Barthel, Juri
    Houben, Lothar
    Jia, Chun-Lin
    Jin, Lei
    Lentzen, Markus
    Mi, Shao-Bo
    Thust, Andreas
    Tillmann, Karsten
    PROGRESS IN MATERIALS SCIENCE, 2023, 133
  • [44] Phase retrieval and aberration correction in the presence of vortices in high-resolution transmission electron microscopy
    Allen, LJ
    Faulkner, HML
    Oxley, M
    Paganin, D
    ULTRAMICROSCOPY, 2001, 88 (02) : 85 - 97
  • [45] Materials Advances through Aberration-Corrected Electron Microscopy
    S. J. Pennycook
    M. Varela
    C. J. D. Hetherington
    A. I. Kirkland
    MRS Bulletin, 2006, 31 : 36 - 43
  • [46] New possibilities with aberration-corrected electron microscopy PREFACE
    Cockayne, David
    Kirkland, Angus I.
    Nellist, Peter D.
    Bleloch, Andrew
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2009, 367 (1903): : 3633 - 3635
  • [47] The First Years of the Aberration-Corrected Electron Microscopy Century
    Batson, Philip E.
    MICROSCOPY AND MICROANALYSIS, 2012, 18 (04) : 652 - 655
  • [48] Seeing inside materials by aberration-corrected electron microscopy
    Pennycook, S. J.
    van Benthem, K.
    Marinopoulos, A. G.
    Oh, S-H.
    Molina, S. I.
    Borisevich, A. Y.
    Luo, W.
    Pantelides, S. T.
    INTERNATIONAL JOURNAL OF NANOTECHNOLOGY, 2011, 8 (10-12) : 935 - 947
  • [49] Materials advances through aberration-corrected electron microscopy
    Pennycook, SJ
    Varela, M
    Hetherington, CJD
    Kirkland, AI
    MRS BULLETIN, 2006, 31 (01) : 36 - 43
  • [50] Exploring aberration-corrected electron microscopy for compound semiconductors
    Smith, David J.
    Aoki, Toshihiro
    Mardinly, John
    Zhou, Lin
    McCartney, Martha R.
    MICROSCOPY, 2013, 62 : S65 - S73