Poisson regression models with errors-in-variables: implication and treatment

被引:8
|
作者
Guo, JQ [1 ]
Li, T [1 ]
机构
[1] Indiana Univ, Dept Econ, Bloomington, IN 47405 USA
基金
美国国家科学基金会;
关键词
count data; measurement errors; overdispersion; corrected score estimator;
D O I
10.1016/S0378-3758(01)00250-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Overdispersion has been a common phenomenon in count data and usually treated with the negative binomial model. This paper shows that measurement errors in covariates in general also lead to overdispersion on the observed data if the true data generating process is indeed the Poisson regression. This kind of overdispersion cannot be treated using the negative binomial model, as otherwise, biases will occur. To provide consistent estimates, we propose a new type of corrected score estimator assuming that the distribution of the latent variables is known. The consistency and asymptotic normality of the proposed estimator are established. Simulation results show that this estimator has good finite sample performance. We also illustrate that the Akaike information criterion and Bayesian information criterion work well for selecting the correct model if the true model is the errors-in-variables Poisson regression. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:391 / 401
页数:11
相关论文
共 50 条