Poisson regression models with errors-in-variables: implication and treatment

被引:8
|
作者
Guo, JQ [1 ]
Li, T [1 ]
机构
[1] Indiana Univ, Dept Econ, Bloomington, IN 47405 USA
基金
美国国家科学基金会;
关键词
count data; measurement errors; overdispersion; corrected score estimator;
D O I
10.1016/S0378-3758(01)00250-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Overdispersion has been a common phenomenon in count data and usually treated with the negative binomial model. This paper shows that measurement errors in covariates in general also lead to overdispersion on the observed data if the true data generating process is indeed the Poisson regression. This kind of overdispersion cannot be treated using the negative binomial model, as otherwise, biases will occur. To provide consistent estimates, we propose a new type of corrected score estimator assuming that the distribution of the latent variables is known. The consistency and asymptotic normality of the proposed estimator are established. Simulation results show that this estimator has good finite sample performance. We also illustrate that the Akaike information criterion and Bayesian information criterion work well for selecting the correct model if the true model is the errors-in-variables Poisson regression. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:391 / 401
页数:11
相关论文
共 50 条
  • [1] Errors-in-variables beta regression models
    Carrasco, Jalmar M. F.
    Ferrari, Silvia L. P.
    Arellano-Valle, Reinaldo B.
    JOURNAL OF APPLIED STATISTICS, 2014, 41 (07) : 1530 - 1547
  • [2] ON ERRORS-IN-VARIABLES FOR BINARY REGRESSION-MODELS
    CARROLL, RJ
    SPIEGELMAN, CH
    LAN, KKG
    BAILEY, KT
    ABBOTT, RD
    BIOMETRIKA, 1984, 71 (01) : 19 - 25
  • [3] Bayesian Approach to Errors-in-Variables in Regression Models
    Rozliman, Nur Aainaa
    Ibrahim, Adriana Irawati Nur
    Yunus, Rossita Mohammad
    3RD ISM INTERNATIONAL STATISTICAL CONFERENCE 2016 (ISM III): BRINGING PROFESSIONALISM AND PRESTIGE IN STATISTICS, 2017, 1842
  • [4] Aleatoric Uncertainty for Errors-in-Variables Models in Deep Regression
    Martin, J.
    Elster, C.
    NEURAL PROCESSING LETTERS, 2023, 55 (04) : 4799 - 4818
  • [5] Covariate selection for linear errors-in-variables regression models
    Xu, Qinfeng
    You, Jinhong
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2007, 36 (1-4) : 375 - 386
  • [6] Composite quantile regression for linear errors-in-variables models
    Jiang, Rong
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2015, 44 (03): : 707 - 713
  • [7] Aleatoric Uncertainty for Errors-in-Variables Models in Deep Regression
    J. Martin
    C. Elster
    Neural Processing Letters, 2023, 55 : 4799 - 4818
  • [8] Expectile Regression With Errors-in-Variables
    He, Xiaoxia
    Zhou, Xiaodan
    Li, Chunli
    IEEE ACCESS, 2023, 11 : 63116 - 63125
  • [9] Regression quantiles with errors-in-variables
    Ioannides, D. A.
    Matzner-Lober, Eric
    JOURNAL OF NONPARAMETRIC STATISTICS, 2009, 21 (08) : 1003 - 1015
  • [10] NONPARAMETRIC REGRESSION WITH ERRORS-IN-VARIABLES
    FAN, JQ
    TRUONG, YK
    ANNALS OF STATISTICS, 1993, 21 (04): : 1900 - 1925