Multifunctional Mitochondrial Epac1 Controls Myocardial Cell Death

被引:85
|
作者
Fazal, Loubina [1 ,2 ]
Laudette, Marion [1 ,2 ]
Paula-Gomes, Silvia [1 ,2 ]
Pons, Sandrine [3 ]
Conte, Caroline [1 ]
Tortosa, Florence [1 ,2 ]
Sicard, Pierre [1 ,2 ]
Sainte-Marie, Yannis [1 ,2 ]
Bisserier, Malik [1 ,2 ]
Lairez, Olivier [1 ,2 ]
Lucas, Alexandre [1 ,2 ]
Roy, Jerome [4 ,5 ]
Ghaleh, Bijan [3 ]
Fauconnier, Jeremy [4 ,5 ]
Mialet-Perez, Jeanne [1 ,2 ]
Lezoualc'h, Frank [1 ,2 ]
机构
[1] INSERM, UMR 1048, Inst Malad Metab & Cardiovasc, 1 Ave Jean Pouhles, F-31432 Toulouse 4, France
[2] Univ Toulouse, Toulouse, France
[3] INSERM, Equipe 03, U955, F-94000 Creteil, France
[4] Univ Montpellier, INSERM, UMR 1046, Montpellier, France
[5] Univ Montpellier, UMR CNRS 9214, PHYMEDEX, Montpellier, France
关键词
calcium; cyclic AMP; ischemia reperfusion injury; mitochondria; reactive oxygen species; PERMEABILITY TRANSITION PORE; OXIDATIVE STRESS; SIGNALING PATHWAY; HEART; RETICULUM; CARDIOMYOCYTES; ACTIVATION; MECHANISM; APOPTOSIS; PROTEINS;
D O I
10.1161/CIRCRESAHA.116.309859
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Rationale: Although the second messenger cyclic AMP (cAMP) is physiologically beneficial in the heart, it largely contributes to cardiac disease progression when dysregulated. Current evidence suggests that cAMP is produced within mitochondria. However, mitochondrial cAMP signaling and its involvement in cardiac pathophysiology are far from being understood. Objective: To investigate the role of MitEpac1 (mitochondrial exchange protein directly activated by cAMP 1) in ischemia/reperfusion injury. Methods and Results: We show that Epac1 (exchange protein directly activated by cAMP 1) genetic ablation (Epac1(-/-)) protects against experimental myocardial ischemia/reperfusion injury with reduced infarct size and cardiomyocyte apoptosis. As observed in vivo, Epac1 inhibition prevents hypoxia/reoxygenation-induced adult cardiomyocyte apoptosis. Interestingly, a deleted form of Epac1 in its mitochondrial-targeting sequence protects against hypoxia/reoxygenation-induced cell death. Mechanistically, Epac1 favors Ca2+ exchange between the endoplasmic reticulum and the mitochondrion, by increasing interaction with a macromolecular complex composed of the VDAC1 (voltage-dependent anion channel 1), the GRP75 (chaperone glucose-regulated protein 75), and the IP3R1 (inositol-1,4,5-triphosphate receptor 1), leading to mitochondrial Ca2+ overload and opening of the mitochondrial permeability transition pore. In addition, our findings demonstrate that MitEpac1 inhibits isocitrate dehydrogenase 2 via the mitochondrial recruitment of CaMKII (Ca2+/calmodulin-dependent protein kinase II), which decreases nicotinamide adenine dinucleotide phosphate hydrogen synthesis, thereby, reducing the antioxidant capabilities of the cardiomyocyte. Conclusions: Our results reveal the existence, within mitochondria, of different cAMP-Epac1 microdomains that control myocardial cell death. In addition, our findings suggest Epac1 as a promising target for the treatment of ischemia-induced myocardial damage.
引用
收藏
页码:645 / +
页数:36
相关论文
共 50 条
  • [31] Structure-Guided Design of Selective Epac1 and Epac2 Agonists
    Schwede, Frank
    Bertinetti, Daniela
    Langerijs, Carianne N.
    Hadders, Michael A.
    Wienk, Hans
    Ellenbroek, Johanne H.
    de Koning, Eelco J. P.
    Bos, Johannes L.
    Herberg, Friedrich W.
    Genieser, Hans-Gottfried
    Janssen, Richard A. J.
    Rehmann, Holger
    PLOS BIOLOGY, 2015, 13 (01):
  • [32] Epac1 agonist decreased inflammatory proteins in retinal endothelial cells, and loss of Epac1 increased inflammatory proteins in the retinal vasculature of mice
    Liu, Li
    Jiang, Youde
    Chahine, Adam
    Curtiss, Elizabeth
    Steinle, Jena J.
    MOLECULAR VISION, 2017, 23 : 1 - 7
  • [33] Epac1 regulates integrity of endothelial cell junctions through VE-cadherin
    Kooistra, MRH
    Corada, M
    Dejana, E
    Bos, JL
    FEBS LETTERS, 2005, 579 (22): : 4966 - 4972
  • [34] Epac1 Deficiency Attenuated Vascular Smooth Muscle Cell Migration and Neointimal Formation
    Kato, Yuko
    Yokoyama, Utako
    Yanai, Chiharu
    Ishige, Rina
    Kurotaki, Daisuke
    Umemura, Masanari
    Fujita, Takayuki
    Kubota, Tetsuo
    Okumura, Satoshi
    Sata, Masataka
    Tamura, Tomohiko
    Ishikawa, Yoshihiro
    ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2015, 35 (12) : 2617 - 2625
  • [35] A Novel Fluorescent Epac-Agonist Reveals Epac1 and Epac2 Subcellular Localization in Cardiomyocytes
    Pereira, Laetitia
    Erickson, Jeffrey
    Chen, Ju
    Bers, Donald M.
    BIOPHYSICAL JOURNAL, 2014, 106 (02) : 114A - 114A
  • [36] Epac1 and Epac2 regulate airway smooth muscle tone in mice
    Schmidt, Martina
    Oldenburger, Anouk
    Maarsingh, Harm
    EUROPEAN RESPIRATORY JOURNAL, 2016, 48
  • [37] Differential Roles of Epac in Regulating Cell Death in Neuronal and Myocardial Cells
    Suzuki, Sayaka
    Yokoyama, Utako
    Abe, Takaya
    Kiyonari, Hiroshi
    Yamashita, Naoya
    Kato, Yuko
    Kurotani, Reiko
    Sato, Motohiko
    Okumura, Satoshi
    Ishikawa, Yoshihiro
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2010, 285 (31) : 24248 - 24259
  • [38] The cAMP/Epac1/Rap1 pathway in pancreatic carcinoma
    Lorenz, Richard
    Aleksic, Tamara
    Wagner, Martin
    Adler, Guido
    Weber, Christoph K.
    PANCREAS, 2008, 37 (01) : 102 - 103
  • [39] Spatiotemporal coordination of nuclear cAMP signals via EPAC1
    Iannucci, L. F.
    Grisan, F.
    Tubi, Quotti L.
    Scorrano, L.
    Di Benedetto, G.
    Piazza, F.
    Lefkimmiatis, K.
    ACTA PHYSIOLOGICA, 2019, 227 : 145 - 145
  • [40] Membranes prime the RapGEF EPAC1 to transduce cAMP signaling
    Sartre, Candice
    Peurois, Francois
    Ley, Marie
    Kryszke, Marie-Helene
    Zhang, Wenhua
    Courilleau, Delphine
    Fischmeister, Rodolphe
    Ambroise, Yves
    Zeghouf, Mahel
    Cianferani, Sarah
    Ferrandez, Yann
    Cherfils, Jacqueline
    NATURE COMMUNICATIONS, 2023, 14 (01)