Stable two-dimensional soliton complexes in Bose-Einstein condensates with helicoidal spin-orbit coupling

被引:21
|
作者
Kartashov, Y., V [1 ]
Sherman, E. Ya [2 ,3 ]
Malomed, B. A. [4 ,5 ,6 ]
Konotop, V. V. [7 ,8 ]
机构
[1] Russian Acad Sci, Inst Spect, Moscow 108840, Russia
[2] Univ Basque Country, UPV EHU, Dept Phys Chem, Bilbao 48080, Spain
[3] IKERBASQUE Basque Fdn Sci, Bilbao, Spain
[4] Tel Aviv Univ, Fac Engn, Sch Elect Engn, Dept Phys Elect, IL-69978 Tel Aviv, Israel
[5] Tel Aviv Univ, Ctr Light Matter Interact, IL-69978 Tel Aviv, Israel
[6] Univ Tarapaca, Inst Alta Invest, Casilla 7D, Arica, Chile
[7] Univ Lisbon, Fac Ciencias, Dept Fis, Edificio C8, P-1749016 Lisbon, Portugal
[8] Univ Lisbon, Ctr Fis Teor & Comp, Edificio C8, P-1749016 Lisbon, Portugal
基金
美国国家科学基金会; 以色列科学基金会;
关键词
solitons; matter waves; spin-orbit coupling; quantum gases; VORTEX SOLITONS; DROPLETS;
D O I
10.1088/1367-2630/abb911
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that attractive two-dimensional (2D) spinor Bose-Einstein condensates with helicoidal spatially periodic spin-orbit coupling (SOC) support a rich variety of stable fundamental solitons and bound soliton complexes. Such states exist with chemical potentials belonging to the semi-infinite gap in the band spectrum created by the periodically modulated SOC. All these states exist above a certain threshold value of the norm. The chemical potential of fundamental solitons attains the bottom of the lowest band, whose locus is a ring in the space of Bloch momenta, and the radius of the non-monotonous function of the SOC strength. The chemical potential of soliton complexes does not attain the band edge. The complexes are bound states of several out-of-phase fundamental solitons whose centers are placed at local maxima of the SOC-modulation phase. In this sense, the impact of the helicoidal SOC landscape on the solitons is similar to that of a periodic 2D potential. In particular, it can compensate repulsive forces between out-of-phase solitons, making their bound states stable. Extended stability domains are found for complexes built of two and four solitons (dipoles and quadrupoles, respectively). They are typically stable below a critical value of the chemical potential.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Feynman relation of Bose-Einstein condensates with spin-orbit coupling
    He, Pei-Song
    Liao, Renyuan
    Liu, Wu-Ming
    PHYSICAL REVIEW A, 2012, 86 (04):
  • [22] Dynamics of multiple solitons in helicoidal spin-orbit coupling Bose–Einstein condensates
    Pingping Fang
    Juntao He
    Reza Asgari
    Xianlong Gao
    Ji Lin
    The European Physical Journal Plus, 138
  • [23] Stable knotted structure in spin-1 Bose-Einstein condensates with spin-orbit coupling
    Liu, Yong-Kai
    Liu, Yun
    Yang, Shi-Jie
    PHYSICAL REVIEW A, 2019, 99 (06)
  • [24] Bose-Einstein Condensates with Spin-Orbit Interaction
    Ho, Tin-Lun
    Zhang, Shizhong
    PHYSICAL REVIEW LETTERS, 2011, 107 (15)
  • [25] Spin-orbit coupled Bose-Einstein condensates
    Stanescu, Tudor D.
    Anderson, Brandon
    Galitski, Victor
    PHYSICAL REVIEW A, 2008, 78 (02):
  • [26] Modulational instability in two-dimensional dissipative open Bose-Einstein condensates with mixed helicoidal and Rashba-Dresselhaus spin-orbit couplings
    Tabi, Conrad Bertrand
    Otlaadisa, Phelo
    Kofane, Timoleon Crepin
    PHYSICS LETTERS A, 2023, 481
  • [27] Soliton collisions in spin-orbit coupled spin-1 Bose-Einstein condensates
    Qi, Juan-juan
    Zhao, Dun
    Liu, Wu-Ming
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2023, 56 (25)
  • [28] Bose-Einstein Condensates with Cavity-Mediated Spin-Orbit Coupling
    Deng, Y.
    Cheng, J.
    Jing, H.
    Yi, S.
    PHYSICAL REVIEW LETTERS, 2014, 112 (14)
  • [29] Spin-Orbit Coupled Spinor Bose-Einstein Condensates
    Wang, Chunji
    Gao, Chao
    Jian, Chao-Ming
    Zhai, Hui
    PHYSICAL REVIEW LETTERS, 2010, 105 (16)
  • [30] Bose-Einstein Condensation of Two-Dimensional Magnetoexcitons Under the Influence of Rashba Spin-Orbit Coupling
    Dumanov, E. V.
    JOURNAL OF NANOELECTRONICS AND OPTOELECTRONICS, 2012, 7 (07) : 724 - 729