Contact surgeries on Legendrian figure-eight knots

被引:1
|
作者
Conway, James [1 ]
机构
[1] Univ Calif Berkeley, Dept Math, 970 Evans Hall 3840, Berkeley, CA 94720 USA
关键词
HEEGAARD FLOER INVARIANTS; SZABO INVARIANTS; 3-MANIFOLDS;
D O I
10.4310/JSG.2019.v17.n4.a4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that all positive contact surgeries on every Legendrian figure-eight knot in (S-3, xi(std)) result in an overtwisted contact structure. The proof uses convex surface theory and invariants from Heegaard Floer homology.
引用
收藏
页码:1061 / 1078
页数:18
相关论文
共 50 条
  • [31] On Jorgensen numbers and their analogs for groups of figure-eight orbifolds
    Vesnin, A. Yu
    Masley, A. V.
    SIBERIAN MATHEMATICAL JOURNAL, 2014, 55 (05) : 807 - 816
  • [32] Wave propagation characteristics of a figure-eight shaped nanoaperture
    Eom, G.S.
    Yang, D.
    Lee, E.
    Park, S.
    Lee, Y.
    Hahn, J.W.
    Journal of Applied Physics, 2007, 101 (10):
  • [33] Eccentric Figure-Eight Coils for Transcranial Magnetic Stimulation
    Sekino, Masaki
    Ohsaki, Hiroyuki
    Takiyama, Yoshihiro
    Yamamoto, Keita
    Matsuzaki, Taiga
    Yasumuro, Yoshihiro
    Nishikawa, Atsushi
    Maruo, Tomoyuki
    Hosomi, Koichi
    Saitoh, Youichi
    BIOELECTROMAGNETICS, 2015, 36 (01) : 55 - 65
  • [34] Aromaticity in Semi-Condensed Figure-Eight Molecules
    Artigas, Albert
    Carissan, Yannick
    Hagebaum-Reignier, Denis
    Bock, Harald
    Durola, Fabien
    Coquerel, Yoann
    CHEMISTRY-A EUROPEAN JOURNAL, 2024, 30 (35)
  • [35] A Physical Dissipative System with a Poincare Homoclinic Figure-Eight
    Simo, C.
    Vieiro, A.
    PROGRESS AND CHALLENGES IN DYNAMICAL SYSTEMS, 2013, 54 : 383 - 394
  • [36] Invariants of Legendrian and transverse knots in the standard contact space
    Fuchs, D
    Tabachnikov, S
    TOPOLOGY, 1997, 36 (05) : 1025 - 1053
  • [37] On Legendrian surgeries
    Wu, Hao
    MATHEMATICAL RESEARCH LETTERS, 2007, 14 (2-3) : 513 - 530
  • [38] THE AFFINE SHAPE OF A FIGURE-EIGHT UNDER THE CURVE SHORTENING FLOW
    Coiculescu, Matei P.
    Schwartz, Richard Evan
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2024, 127 (03) : 945 - 968
  • [39] Finite volume properly convex deformations of the figure-eight knot
    Ballas, Samuel A.
    GEOMETRIAE DEDICATA, 2015, 178 (01) : 49 - 73
  • [40] LEGENDRIAN RACK INVARIANTS OF LEGENDRIAN KNOTS
    Ceniceros, Jose
    Elhamdadi, Mohamed
    Nelson, Sam
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2021, 36 (03): : 623 - 639