Bayesian methodology for updating geomechanical parameters and uncertainty quantification

被引:64
|
作者
Miranda, T. [1 ]
Correia, A. Gomes [1 ]
Ribeiro e Sousa, L. [2 ]
机构
[1] Univ Minho, Dept Civil Engn, P-4800058 Guimaraes, Portugal
[2] Lachel Felice & Associates, Morristown, NJ USA
关键词
Geomechanical parameters; Uncertainty; Bayesian probabilities; Underground structures;
D O I
10.1016/j.ijrmms.2009.03.008
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
A generic framework for the updating geomechanical parameters is presented. It is based on Bayesian probabilities, and considers several levels of uncertainty. It allows one to properly update the probability distribution function of a given parameter when new data are available. This framework is applied to the case of deformability modulus updating in a large underground structure. Two different approaches were tested in terms of initial knowledge about the parameter, namely no knowledge, and a prior distribution of the parameter based on geological/geotechnical data and application of analytical solutions based on the empirical classification systems. The updating was carried out using the framework together with the results of high quality in situ tests. The Bayesian framework was shown to be a mathematically valid way to deal with the problem of the geomechanical parameter updating and of uncertainty reduction related to the parameter's real value. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1144 / 1153
页数:10
相关论文
共 50 条
  • [31] Bayesian uncertainty quantification of local volatility model
    Kai Yin
    Anirban Mondal
    Sankhya B, 2023, 85 : 290 - 324
  • [32] UNCERTAINTY QUANTIFICATION THROUGH BAYESIAN NONPARAMETRIC MODELLING
    Kockova, E.
    Kucerova, A.
    Sykora, J.
    ENGINEERING MECHANICS 2020 (IM2020), 2020, : 274 - 277
  • [33] Bayesian uncertainty quantification for nuclear matter incompressibility
    Xu, Jun
    Zhang, Zhen
    Li, Bao-An
    PHYSICAL REVIEW C, 2021, 104 (05)
  • [34] Bayesian uncertainty quantification of local volatility model
    Yin, Kai
    Mondal, Anirban
    SANKHYA-SERIES B-APPLIED AND INTERDISCIPLINARY STATISTICS, 2023, 85 (SUPPL 1): : 290 - 324
  • [35] Bayesian uncertainty quantification for anaerobic digestion models
    Picard-Weibel, Antoine
    Capson-Tojo, Gabriel
    Guedj, Benjamin
    Moscoviz, Roman
    BIORESOURCE TECHNOLOGY, 2024, 394
  • [36] Bayesian Solution Uncertainty Quantification for Differential Equations
    Yoo, William Weimin
    BAYESIAN ANALYSIS, 2016, 11 (04): : 1288 - 1289
  • [37] A comparison of two Bayesian approaches for uncertainty quantification
    Mara, Thierry A.
    Delay, Frederick
    Lehmann, Francois
    Younes, Anis
    ENVIRONMENTAL MODELLING & SOFTWARE, 2016, 82 : 21 - 30
  • [38] Bayesian Spectral Moment Estimation and Uncertainty Quantification
    Cao, Norman M.
    Sciortino, Francesco
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2020, 48 (01) : 22 - 30
  • [39] Bayesian uncertainty quantification for synthesizing superheavy elements
    Fang, Yueping
    Gao, Zepeng
    Zhang, Yinu
    Liao, Zehong
    Yang, Yu
    Su, Jun
    Zhu, Long
    PHYSICS LETTERS B, 2024, 858
  • [40] Resolution and uncertainty analysis of Bayesian FE model updating results
    Simoen, E.
    De Roeck, G.
    Lombaert, G.
    PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON STRUCTURAL DYNAMICS, EURODYN 2011, 2011, : 2318 - 2325