Ion flux mapping in an inertial-electrostatic confinement device using a chordwire diagnostic

被引:1
|
作者
Murali, S. Krupakar [1 ]
Santarius, J. F. [1 ]
Kulcinski, G. L. [1 ]
机构
[1] Univ Wisconsin, Fus Technol Inst, Madison, WI 53706 USA
关键词
FUSION; OPPORTUNITIES;
D O I
10.1063/1.3243932
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Theoretical study of ion microchannels that form in an inertial-electrostatic confinement (IEC) device has helped understand the behavior of ions of various energies within a microchannel and has also predicted that smaller grids produce a more converged core. However, such theoretical work has many limitations that make experimental work indispensable. In the present paper the experimental measurements of ion flow patterns into the cathode grid and their consequences (using a "chordwire" diagnostic that intercepts ions streaming into the IEC core) are reported. Experimental measurements also have quantified the interruption of the ion flow due to the adverse influence of the high voltage stalk. In addition, the chordwire arrangement can be used to study the radiation damage of materials. (C) 2009 American Institute of Physics. [doi:10.1063/1.3243932]
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Operation of Inertial Electrostatic Confinement Fusion (IECF) Device Using Different Gases
    Elaragi, Gamal M.
    JOURNAL OF FUSION ENERGY, 2018, 37 (01) : 37 - 44
  • [42] Fusion energy in an inertial electrostatic confinement device using a magnetically shielded grid
    Hedditch, John
    Bowden-Reid, Richard
    Khachan, Joe
    PHYSICS OF PLASMAS, 2015, 22 (10)
  • [43] Operation of Inertial Electrostatic Confinement Fusion (IECF) Device Using Different Gases
    Gamal M. Elaragi
    Journal of Fusion Energy, 2018, 37 : 37 - 44
  • [44] Penning Ion Source in Inertial Electrostatic Confinement Systems
    Prokuratov, I. A.
    Mikhailov, Yu. V.
    Lemeshko, B. D.
    Il'ichev, I. V.
    Grigor'ev, T. A.
    Dulatov, A. K.
    Yurkov, D. I.
    INSTRUMENTS AND EXPERIMENTAL TECHNIQUES, 2024, 67 (02) : 283 - 294
  • [45] Diverging ion motion in an inertial electrostatic confinement discharge
    Shrier, O
    Khachan, J
    Bosi, S
    Fitzgerald, M
    Evans, N
    PHYSICS OF PLASMAS, 2006, 13 (01) : 1 - 5
  • [46] Studies on virtual electrode and ion sheath characteristics in a cylindrical inertial electrostatic confinement fusion device
    Bhattacharjee, D.
    Jigdung, D.
    Buzarbaruah, N.
    Mohanty, S. R.
    Bailung, H.
    PHYSICS OF PLASMAS, 2019, 26 (07)
  • [47] POTENTIAL DISTRIBUTIONS DUE TO ELECTRON AND ION INJECTION IN A SPHERICAL INERTIAL ELECTROSTATIC PLASMA CONFINEMENT DEVICE
    CHERRINGTON, BE
    SWANSON, DA
    VERDEYEN, JT
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1975, 20 (10): : 1302 - 1302
  • [48] Magnetron-discharge-based ion source for improvement of an inertial electrostatic confinement fusion device
    Takamatsu, T
    Masuda, K
    Yoshikawa, K
    Toku, H
    Nagasaki, K
    Kyunai, T
    FUSION SCIENCE AND TECHNOLOGY, 2005, 47 (04) : 1290 - 1294
  • [49] Study of ion flow dynamics in an inertial electrostatic confinement device through sequential grid construction
    Murali, S. Krupakar
    Kulcinski, G. L.
    Santarius, J. F.
    PHYSICS OF PLASMAS, 2008, 15 (12)
  • [50] Discharge characteristics of the spherical inertial electrostatic, confinement (IEC) device
    Miley, GH
    Gu, YB
    DeMora, JM
    Stubbers, RA
    Hochberg, TA
    Nadler, JH
    Anderl, RA
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 1997, 25 (04) : 733 - 739