Solving TSP by using Lotka-Volterra neural networks

被引:11
|
作者
Li, Manli [1 ]
Yi, Zhang [2 ]
Zhu, Min [2 ]
机构
[1] Univ Elect Sci & Technol China, Computat Intelligence Lab, Sch Engn & Comp Sci, Chengdu 610054, Peoples R China
[2] Sichuan Univ, Coll Comp Sci, Machine Intelligence Lab, Chengdu 610065, Peoples R China
关键词
Neural networks; Lotka-Volterra neural networks; Traveling salesman problem; STABILITY CONDITIONS; FEATURE BINDING; LOCAL MINIMA; MODEL;
D O I
10.1016/j.neucom.2009.05.002
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a new approach to solve traveling salesman problem (TSP) by using a class of Lotka-Volterra neural networks (LVNN) with global inhibition. Some stability criteria that ensure the convergence of valid solutions are obtained. It is proved that an equilibrium state is stable if and only if it corresponds to a valid solution of the TSP. Thus, a valid solution can always be obtained whenever the network convergence to a stable state. A set of analytical conditions for optimal settings of LVNN is derived. Simulation results illustrate the theoretical analysis. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:3873 / 3880
页数:8
相关论文
共 50 条
  • [31] On the structure of Lotka-Volterra coalgebras
    Arenas, Manuel
    Labra, Alicia
    Paniello, Irene
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (06) : 2386 - 2403
  • [32] A note on Lotka-Volterra system
    Florica, A
    Ioana, P
    Maria, M
    Bulletin of the University of Agricultural Sciences and Veterinary Medicine, Vol 57: HORTICULTURE, 2002, 57 : 266 - 269
  • [33] Monitoring in a Lotka-Volterra model
    Lopez, I.
    Gamez, M.
    Garay, J.
    Varga, Z.
    BIOSYSTEMS, 2007, 87 (01) : 68 - 74
  • [34] STABILITY OF LOTKA-VOLTERRA SYSTEMS
    TULJAPURKAR, SD
    SEMURA, JS
    NATURE, 1975, 257 (5525) : 388 - 389
  • [35] Transitivity of a Lotka-Volterra map
    Guirao, Juan Luis Garcia
    Lampart, Marek
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2008, 9 (01): : 75 - 82
  • [36] On perturbation of the Lotka-Volterra model
    El-Owaidy, H.
    Al-Thumairi, A.
    APPLIED MATHEMATICS LETTERS, 2009, 22 (04) : 557 - 560
  • [37] STABILITY OF LOTKA-VOLTERRA MODEL
    LADDE, GS
    SATHANANTHAN, S
    MATHEMATICAL AND COMPUTER MODELLING, 1992, 16 (03) : 99 - 107
  • [38] The Lotka-Volterra canonical format
    Rocha, TA
    Gléria, IM
    Figueiredo, A
    Brenig, L
    ECOLOGICAL MODELLING, 2005, 183 (01) : 95 - 106
  • [39] Integrable Lotka-Volterra systems
    O. I. Bogoyavlenskij
    Regular and Chaotic Dynamics, 2008, 13 : 543 - 556
  • [40] Dynamics of a Lotka-Volterra map
    Balibrea, Francisco
    Guirao, Juan Luis Garcia
    Lampart, Marek
    Llibre, Jaume
    FUNDAMENTA MATHEMATICAE, 2006, 191 (03) : 265 - 279