Ecosystem-scale effects of megafauna in African savannas

被引:80
|
作者
Asner, Gregory P. [1 ]
Vaughn, Nicholas [1 ]
Smit, Izak P. J. [2 ,3 ]
Levick, Shaun [4 ]
机构
[1] Carnegie Inst Sci, Dept Global Ecol, 260 Panama St, Stanford, CA 94305 USA
[2] Sci Serv, South African Natl Pk,Private Bag X402, ZA-1350 Skukuza, South Africa
[3] Univ Witwatersrand, Sch Anim Plant & Environm Sci, Ctr African Ecol, Private Bag 3, ZA-2050 Johannesburg, South Africa
[4] Max Planck Inst Biogeochem, Dept Biogeochem Proc, Hans Knoll Str 10, DE-07745 Jena, Germany
基金
美国安德鲁·梅隆基金会;
关键词
KRUGER-NATIONAL-PARK; WOODY VEGETATION STRUCTURE; ELEPHANT DISTRIBUTION; FIRE HISTORY; SABIE RIVER; TREE; LANDSCAPE; IMPACTS; HERBIVORES; MANAGEMENT;
D O I
10.1111/ecog.01640
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Natural protected areas are critically important in the effort to prevent large-scale megafaunal extinctions caused by hunting and habitat degradation. Yet such protection can lead to rapid increases in megafauna populations. Understanding ecosystem-scale responses of vegetation to changing megafaunal populations, such as the case of the African elephant Loxodonta africana in savannas, requires large-scale, high-resolution monitoring over time. From 2008 to 2014, we repeatedly surveyed the fate of more than 10.4 million woody plant canopies throughout the Kruger National Park, South Africa using airborne Light Detection and Ranging (LiDAR), to determine the relative importance of multiple environmental, biotic and management factors affecting treefall rates and patterns. We report a mean biennial treefall rate of 8 trees or 12% ha(-1), but with heterogeneous patterns of loss in both space and time. Throughout Kruger, the influence of elephant density on treefall was matched only by spatial variation in soils and elevation, and all three factors co-dominated park-wide treefall patterns. Elephant density was up to two times more influential than fire frequency in determining treefall rates, and this pattern was most pronounced for taller trees (> 2 m in height). Our results suggest that confining megafauna populations to protected areas, or reintroducing them into former or new habitat, can greatly alter the structure and functioning of the host ecosystem. Conservation strategies will need to accommodate and manage these massive ecological changes in the effort to save megafauna from extinction, without compromising system functionality.
引用
收藏
页码:240 / 252
页数:13
相关论文
共 50 条
  • [21] Afforestation of Tropical Pasture Only Marginally Affects Ecosystem-Scale Evapotranspiration
    Wolf, Sebastian
    Eugster, Werner
    Majorek, Sonja
    Buchmann, Nina
    ECOSYSTEMS, 2011, 14 (08) : 1264 - 1275
  • [22] An Ecosystem-Scale Flux Measurement Strategy to Assess Natural Climate Solutions
    Hemes, Kyle S.
    Runkle, Benjamin R. K.
    Novick, Kimberly A.
    Baldocchi, Dennis D.
    Field, Christopher B.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2021, 55 (06) : 3494 - 3504
  • [23] Ecosystem-scale measurements of biomass water using cosmic ray neutrons
    Franz, Trenton E.
    Zreda, Marek
    Rosolem, Rafael
    Hornbuckle, Brian K.
    Irvin, Samantha L.
    Adams, Henry
    Kolb, Thomas E.
    Zweck, Chris
    Shuttleworth, W. James
    GEOPHYSICAL RESEARCH LETTERS, 2013, 40 (15) : 3929 - 3933
  • [24] Widespread habitat loss leads to ecosystem-scale decrease in trophic function
    James, W. Ryan
    Furman, Bradley T.
    Rodemann, Jonathan R.
    Costa, Sophia V.
    Fratto, Zachary W.
    Nelson, James A.
    Rehage, Jennifer S.
    Santos, Rolando O.
    GLOBAL CHANGE BIOLOGY, 2024, 30 (04)
  • [25] Hot moments in spawning aggregations: implications for ecosystem-scale nutrient cycling
    Archer, Stephanie K.
    Allgeier, Jacob E.
    Semmens, Brice X.
    Heppell, Scott A.
    Pattengill-Semmens, Christy V.
    Rosemond, Amy D.
    Bush, Phillippe G.
    McCoy, Croy M.
    Johnson, Bradley C.
    Layman, Craig A.
    CORAL REEFS, 2015, 34 (01) : 19 - 23
  • [26] Trade-offs in ecosystem-scale optimization of fisheries management policies
    Christensen, V
    Walters, CJ
    BULLETIN OF MARINE SCIENCE, 2004, 74 (03) : 549 - 562
  • [27] Hot moments in spawning aggregations: implications for ecosystem-scale nutrient cycling
    Stephanie K. Archer
    Jacob E. Allgeier
    Brice X. Semmens
    Scott A. Heppell
    Christy V. Pattengill-Semmens
    Amy D. Rosemond
    Phillippe G. Bush
    Croy M. McCoy
    Bradley C. Johnson
    Craig A. Layman
    Coral Reefs, 2015, 34 : 19 - 23
  • [28] Ecosystem-scale compensation points of formic and acetic acid in the central Amazon
    Jardine, K.
    Serrano, A. Yanez
    Arneth, A.
    Abrell, L.
    Jardine, A.
    Artaxo, P.
    Alves, E.
    Kesselmeier, J.
    Taylor, T.
    Saleska, S.
    Huxman, T.
    BIOGEOSCIENCES, 2011, 8 (12) : 3709 - 3720
  • [29] Ecosystem-scale methane flux in tropical peat swamp forest in Indonesia
    Sakabe, Ayaka
    Itoh, Masayuki
    Hirano, Takashi
    Kusin, Kitso
    GLOBAL CHANGE BIOLOGY, 2018, 24 (11) : 5123 - 5136
  • [30] Predicting the effects of atmospheric nitrogen deposition in conifer stands: Evidence from the NITREX ecosystem-scale experiments
    Emmett, BA
    Boxman, D
    Bredemeier, M
    Gundersen, P
    Kjonaas, OJ
    Moldan, F
    Schleppi, P
    Tietema, A
    Wright, RF
    ECOSYSTEMS, 1998, 1 (04) : 352 - 360