The powers of two as sums over partitions

被引:0
|
作者
Merca, Mircea [1 ,2 ]
机构
[1] Univ Craiova, Dept Math, Craiova 200585, Romania
[2] Acad Romanian Sci, Ilfov 3,Sect 5, Bucharest, Romania
关键词
Binomial coeffcients; partitions;
D O I
10.2989/16073606.2020.1825019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate two methods to express the natural powers of 2 as sums over integer partitions. First we consider a formula by N. J. Fine that allows us to express a binomial coefficient in terms of multinomial coefficients as a sum over partitions. The second method invokes the central binomial coefficients and the logarithmic differentiation of their generating function. Some experimental results suggest the existence of other methods of decomposing the power of 2 as sums over partitions.
引用
收藏
页码:1745 / 1755
页数:11
相关论文
共 50 条
  • [31] Integers that are sums of two rational sixth powers
    Newton, Alexis
    Rouse, Jeremy
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2023, 66 (01): : 166 - 177
  • [32] Powers of Two as Sums of Three Pell Numbers
    Bravo, Jhon J.
    Faye, Bernadette
    Luca, Florian
    TAIWANESE JOURNAL OF MATHEMATICS, 2017, 21 (04): : 739 - 751
  • [33] Matrices over commutative rings as sums of higher powers
    Muangma, Kunlathida
    Rodtes, Kijti
    LINEAR & MULTILINEAR ALGEBRA, 2024, 72 (02): : 296 - 324
  • [34] Matrices over noncommutative rings as sums of kth powers
    Katre, S. A.
    Wadikar, Kshipra
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (11): : 2050 - 2058
  • [35] Exponential sums over Möbius convolutions with applications to partitions
    Basak, Debmalya
    Robles, Nicolas
    Zaharescu, Alexandru
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2025,
  • [36] POWERS OF TWO AS SUMS OF TWO k-FIBONACCI NUMBERS
    Bravo, Jhon J.
    Gomez, Carlos A.
    Luca, Florian
    MISKOLC MATHEMATICAL NOTES, 2016, 17 (01) : 85 - 100
  • [37] SUMS OF POWERS OF DIGITAL SUMS
    KENNEDY, RE
    COOPER, C
    FIBONACCI QUARTERLY, 1993, 31 (04): : 341 - 345
  • [38] Evaluating Binomial Character Sums Modulo Powers of Two
    Vincent PIGNO
    Chris PINNER
    Joe SHEPPARD
    JournalofMathematicalResearchwithApplications, 2015, 35 (02) : 137 - 142
  • [39] Sums of two cubes as twisted perfect powers, revisited
    Bennett, Michael A.
    Bruni, Carmen
    Freitas, Nuno
    ALGEBRA & NUMBER THEORY, 2018, 12 (04) : 959 - 999
  • [40] Plane curves in boxes and equal sums of two powers
    Browning, TD
    Heath-Brown, DR
    MATHEMATISCHE ZEITSCHRIFT, 2005, 251 (02) : 233 - 247