Cellulose acetate based 3-dimensional electrospun scaffolds for skin tissue engineering applications

被引:99
|
作者
Atila, Deniz [1 ]
Keskin, Dilek [1 ,2 ]
Tezcaner, Aysen [1 ,2 ]
机构
[1] Middle E Tech Univ, Dept Engn Sci, Ankara, Turkey
[2] Middle E Tech Univ, Biomat & Tissue Engn Ctr Excellence, Ankara, Turkey
关键词
Cellulose acetate; Pullulan; Electrospinning; Skin tissue engineering; STEM-CELLS; NANOFIBERS; FIBERS; BIOCOMPATIBILITY; SOLVENT; MATS;
D O I
10.1016/j.carbpol.2015.06.109
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Skin defects that are not able to regenerate by themselves are among the major problems faced. Tissue engineering approach holds promise for treating such defects. Development of tissue-mimicking-scaffolds that can promote healing process receives an increasing interest in recent years. In this study, 3-dimensional electrospun cellulose acetate (CA) pullulan (PULL) scaffolds were developed for the first time. PULL was intentionally used to obtain 3D structures with adjustable height. It was removed from the electrospun mesh to increase the porosity and biostability. Different ratios of the polymers were electrospun and analyzed with respect to degradation, porosity, and mechanical properties. It has been observed that fiber diameter, thickness and porosity of scaffolds increased with increased PULL content, on the other hand this resulted with higher degradation of scaffolds. Mechanical strength of scaffolds was improved after PULL removal suggesting their suitability as cell carriers. Cell culture studies were performed with the selected scaffold group (CA/PULL: 50/50) using mouse fibroblastic cell line (L929). In vitro cell culture tests showed that cells adhered, proliferated and populated CA/PULL (50/50) scaffolds showing that they are cytocompatible. Results suggest that uncrosslinked CA/PULL (50/50) electrospun scaffolds hold potential for skin tissue engineering applications. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:251 / 261
页数:11
相关论文
共 50 条
  • [21] The Impact of Helium and Nitrogen Plasmas on Electrospun Gelatin Nanofiber Scaffolds for Skin Tissue Engineering Applications
    Mozaffari, Abolfazl
    Gashti, Mazeyar Parvinzadeh
    Alimohammadi, Farbod
    Pousti, Mohammad
    JOURNAL OF FUNCTIONAL BIOMATERIALS, 2024, 15 (11)
  • [22] Emu oil-based electrospun nanofibrous scaffolds for wound skin tissue engineering
    Unnithan, Afeesh R.
    Pichiah, P. B. Tirupathi
    Gnanasekaran, Gopalsamy
    Seenivasan, Kalaiselvi
    Barakat, Nasser A. M.
    Cha, Youn-Soo
    Jung, Che-Hun
    Shanmugam, Achiraman
    Kim, Hak Yong
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2012, 415 : 454 - 460
  • [23] Protein encapsulated in electrospun nanofibrous scaffolds for tissue engineering applications
    Norouzi, Mohammad
    Soleimani, Masoud
    Shabani, Iman
    Atyabi, Fatemeh
    Ahvaz, Hana H.
    Rashidi, Abusaeed
    POLYMER INTERNATIONAL, 2013, 62 (08) : 1250 - 1256
  • [24] Cellulose-Based Scaffolds for Tissue Engineering
    Afshang, Amir
    Jalali, Somayeh
    Amiryaghoubi, Nazanin
    IRANIAN JOURNAL OF CHEMISTRY & CHEMICAL ENGINEERING-INTERNATIONAL ENGLISH EDITION, 2024, 43 (02): : 499 - 521
  • [25] Cellulose based scaffolds for cartilage tissue engineering
    Rahatekar, Sameer S.
    Singh, Nandita
    Koziol, Krzysztof
    Patil, Avinash
    Mann, Stephan
    Hollander, Anthony
    Kafienah, Wael
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243
  • [26] Electrospun Collagen Nanofibers and Their Applications in Skin Tissue Engineering
    Law, Jia Xian
    Liau, Ling Ling
    Saim, Aminuddin
    Yang, Ying
    Idrus, Ruszymah
    TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2017, 14 (06) : 699 - 718
  • [27] Electrospun Collagen Nanofibers and Their Applications in Skin Tissue Engineering
    Jia Xian Law
    Ling Ling Liau
    Aminuddin Saim
    Ying Yang
    Ruszymah Idrus
    Tissue Engineering and Regenerative Medicine, 2017, 14 : 699 - 718
  • [28] Novel Electrospun Polycaprolactone/Calcium Alginate Scaffolds for Skin Tissue Engineering
    Molina, Maria I. Echeverria I.
    Chen, Chi-An
    Martinez, Jeniree
    Tran, Perry
    Komvopoulos, Kyriakos
    MATERIALS, 2023, 16 (01)
  • [29] Development of biocompatible, biodegradable electrospun scaffolds for tissue engineering of human skin
    Blackwood, K.
    Freeman, C. O.
    McKean, R.
    Farthing, P.
    Haycock, J. W.
    Ryan, A. J.
    Brook, I.
    MacNeil, S.
    TISSUE ENGINEERING, 2007, 13 (07): : 1670 - 1671
  • [30] Applications of Poly(caprolactone)-Based Nanofibre Electrospun Scaffolds in Tissue Engineering and Regenerative Medicine
    Zhang, Wei
    Weng, Tingting
    Li, Qiong
    Jin, Ronghua
    You, Chuangang
    Wu, Pan
    Shao, Jiaming
    Xia, Sizhan
    Yang, Min
    Han, Chunmao
    Wang, Xingang
    CURRENT STEM CELL RESEARCH & THERAPY, 2021, 16 (04) : 414 - 442