Adaptive Gauss Hermite Filter for Parameter Varying Nonlinear Systems

被引:0
|
作者
Dey, Aritro [1 ]
Sadhu, Smita [1 ]
Ghoshal, T. K. [1 ]
机构
[1] Jadavpur Univ, Dept Elect Engn, Kolkata 700032, India
关键词
Adaptive filters; Nonlinear filtering; Time varying parameters; Parameter estimation; State estimation;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper presents an adaptive sigma point filter based on Gauss Hermite quadrature rule for estimation of unknown time varying parameters and states of nonlinear systems. An adaptive filter is required for such problems because of the unknown parameter variation which often makes the knowledge of the process noise covariance unavailable. The performance of the proposed filter which adapts to the time varying process noise is evaluated using a case study. The simulation results demonstrate that the proposed filter apart from estimating the states can successfully track and estimate the time varying parameter. From Monte Carlo study it is further observed that the performance of the adaptive Gauss Hermite filter is superior compared with its non adaptive version in the perspective of time varying parameter estimation.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Time varying approach to adaptive control of nonlinear systems
    Alnaemi, M
    Phillips, SM
    PROCEEDINGS OF THE 1997 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 1997, : 1218 - 1219
  • [32] Adaptive Gauss-Newton Method for Solving Systems of Nonlinear Equations
    Yudin, N. E.
    DOKLADY MATHEMATICS, 2021, 104 (02) : 293 - 296
  • [33] Miscellanea A note on the accuracy of adaptive Gauss-Hermite quadrature
    Jin, Shaobo
    Andersson, Bjorn
    BIOMETRIKA, 2020, 107 (03) : 737 - 744
  • [34] On Adaptive Gauss-Hermite Quadrature for Estimation in GLMM's
    Kabaila, Paul
    Ranathunga, Nishika
    STATISTICS AND DATA SCIENCE, RSSDS 2019, 2019, 1150 : 130 - 139
  • [35] Parameter Estimation of Nonstationary Power Signals using an Improved Gauss- Newton Adaptive Filter
    Nayak, P. K.
    Pujari, S. S.
    Sahu, B. N.
    2015 IEEE POWER, COMMUNICATION AND INFORMATION TECHNOLOGY CONFERENCE (PCITC-2015), 2015, : 403 - 408
  • [36] Linear Parameter Varying Representation of a class of MIMO Nonlinear Systems
    Schoukens, Maarten
    Toth, Roland
    IFAC PAPERSONLINE, 2018, 51 (26): : 94 - 99
  • [37] H∞ mixed stabilization of nonlinear parameter-varying systems
    Fu, Rong
    Zeng, Jianping
    Duan, Zhisheng
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2018, 28 (17) : 5232 - 5246
  • [38] Identification of nonlinear parameter varying systems with missing output data
    Deng, Jing
    Huang, Biao
    AICHE JOURNAL, 2012, 58 (11) : 3454 - 3467
  • [39] A robust identification method for stochastic nonlinear parameter varying systems
    Morato, Marcelo Menezes
    Stojanovic, Vladimir
    MATHEMATICAL MODELLING AND CONTROL, 2021, 1 (01): : 35 - 51
  • [40] Multimodal Nonlinear Filtering Using Gauss-Hermite Quadrature
    Saal, Hannes P.
    Heess, Nicolas M. O.
    Vijayakumar, Sethu
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PT III, 2011, 6913 : 81 - 96