Lindelof theorems for monotone Sobolev functions in Orlicz spaces on uniform domains

被引:0
|
作者
Futamura, Toshihide [1 ]
Shimomura, Tetsu [2 ]
机构
[1] Daido Univ, Dept Math, Nagoya, Aichi 4578530, Japan
[2] Hiroshima Univ, Grad Sch Educ, Dept Math, Higashihiroshima 7398524, Japan
基金
日本学术振兴会;
关键词
Lindelof type theorem; monotone Sobolev functions; Orlicz spaces; uniform domains; Primary; Secondary; TRACES; LIMITS;
D O I
10.1002/mana.201800014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we are concerned with Lindelof type theorems for monotone (in the sense of Lebesgue) Sobolev functions u on a uniform domain D subset of Rn satisfying integral(D) vertical bar del u vertical bar(z)(n-1) phi(del u(z)vertical bar)omega(delta(D)(z))dz < infinity where backward difference denotes the gradient, delta D(z) denotes the distance from z to the boundary partial differential D, phi is of log-type and omega is a weight function satisfying the doubling condition.
引用
收藏
页码:793 / 804
页数:12
相关论文
共 50 条
  • [31] Hardy operators of monotone functions and sequences in Orlicz spaces
    Heinig, HP
    Kufner, A
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1996, 53 : 256 - 270
  • [32] Gossez's approximation theorems in Musielak-Orlicz-Sobolev spaces
    Ahmida, Youssef
    Chlebicka, Iwona
    Gwiazda, Piotr
    Youssfi, Ahmed
    JOURNAL OF FUNCTIONAL ANALYSIS, 2018, 275 (09) : 2538 - 2571
  • [33] BOUNDARY LIMITS OF MONOTONE SOBOLEV FUNCTIONS ON METRIC SPACES
    Futamura, Toshihide
    Shimomura, Tetsu
    OSAKA JOURNAL OF MATHEMATICS, 2021, 58 (01) : 135 - 147
  • [34] Uniform concentration - Compactness for Sobolev spaces on variable domains
    Bucur, D
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2000, 162 (02) : 427 - 450
  • [35] Hardy–Sobolev Inequalities For Riesz Potentials Of Functions In Orlicz Spaces
    Y. Mizuta
    T. Shimomura
    Acta Mathematica Hungarica, 2023, 171 (2) : 221 - 240
  • [36] Sharp summability of functions from Orlicz-Sobolev spaces
    Cianchi, A
    FUNCTION SPACES, DIFFERENTIAL OPERATORS AND NONLINEAR ANALYSIS: THE HANS TRIEBEL ANNIVERSARY VOLUME, 2003, : 245 - 254
  • [37] MONOTONE META-LINDELOF SPACES
    Gao, Yin-Zhu
    Shi, Wei-Xue
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2009, 59 (03) : 835 - 845
  • [38] Poincare inequalities, uniform domains and extension properties for Newton-Sobolev functions in metric spaces
    Bjoern, Jana
    Shanmugalingam, Nageswari
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 332 (01) : 190 - 208
  • [39] MONOTONE SUPERPOSITIONS IN ORLICZ SPACES
    IOFFE, AD
    DOKLADY AKADEMII NAUK SSSR, 1971, 201 (04): : 784 - &
  • [40] On fractional Orlicz–Sobolev spaces
    Angela Alberico
    Andrea Cianchi
    Luboš Pick
    Lenka Slavíková
    Analysis and Mathematical Physics, 2021, 11