A C1-C0 virtual element discretization for a sixth-order elliptic equation

被引:0
|
作者
Causil, Jose [1 ]
Reales, Carlos [1 ]
Velasquez, Ivan [2 ]
机构
[1] Univ Cordoba, Dept Matemat, Monteria, Colombia
[2] Univ Sinu EBZ, Fac Ciencias Basicas, Monteria, Colombia
关键词
Virtual element method; Sixth-order problem; Higher-order partial differential equations; Biharmonic problem; Error estimates;
D O I
10.1007/s10092-022-00482-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study a virtual element method for the sixth-order elliptic problem with clamped and simply supported boundary conditions type. Using arguments like Ciarlet-Raviart method we introduce an auxiliary unknown w :=Delta u and we propose a weak formulation on H-2 x H-1 Sobolev space. A C-1 x C-0 virtual element discretization is proposed to approximate the solutions of the weak formulation. We also provide the convergence and error estimates results. Finally, several numerical examples illustrating the performance of the virtual element method are reported.
引用
收藏
页数:27
相关论文
共 50 条
  • [41] EFFICIENT BLOCK PRECONDITIONING FOR A C1 FINITE ELEMENT DISCRETIZATION OF THE DIRICHLET BIHARMONIC PROBLEM
    Pestana, J.
    Muddle, R.
    Heil, M.
    Tisseur, F.
    Mihajlovic, M.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (01): : A325 - A345
  • [42] ON THE EMDEN-FOWLER EQUATION u"(t)u(t) = c1 + c2u′/(t)2 WITH c1 ≥ 0, c2 ≥ 0
    Li Mengrong
    ACTA MATHEMATICA SCIENTIA, 2010, 30 (04) : 1227 - 1234
  • [43] A new higher order C0 mixed beam element for FGM beams analysis
    Frikha, A.
    Hajlaoui, A.
    Wali, M.
    Dammak, F.
    COMPOSITES PART B-ENGINEERING, 2016, 106 : 181 - 189
  • [44] A new recovery based C0 element method for fourth-order equations
    Cui, Yuanquan
    Jia, Yuntao
    Zhang, Jinrui
    Niu, Jing
    APPLIED MATHEMATICS LETTERS, 2024, 147
  • [45] A REFINED HIGHER-ORDER GENERALLY ORTHOTROPIC C0 PLATE BENDING ELEMENT
    PANDYA, BN
    KANT, T
    COMPUTERS & STRUCTURES, 1988, 28 (02) : 119 - 133
  • [46] A C-1 FINITE-ELEMENT COLLOCATION METHOD FOR ELLIPTIC-EQUATIONS
    PERCELL, P
    WHEELER, MF
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1980, 17 (05) : 605 - 622
  • [47] C0-Nonconforming Triangular Prism Elements for the Three-Dimensional Fourth Order Elliptic Problem
    Hong-Ru Chen
    Shao-Chun Chen
    Zhong-Hua Qiao
    Journal of Scientific Computing, 2013, 55 : 645 - 658
  • [48] A C0-theory for the blow-up of second order elliptic equations of critical Sobolev growth
    Druet, O
    Hebey, E
    Robert, F
    ELECTRONIC RESEARCH ANNOUNCEMENTS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 9 : 19 - 25
  • [49] C 0-Nonconforming Triangular Prism Elements for the Three-Dimensional Fourth Order Elliptic Problem
    Chen, Hong-Ru
    Chen, Shao-Chun
    Qiao, Zhong-Hua
    JOURNAL OF SCIENTIFIC COMPUTING, 2013, 55 (03) : 645 - 658
  • [50] C0-nonconforming tetrahedral and cuboid elements for the three-dimensional fourth order elliptic problem
    Chen, Hongru
    Chen, Shaochun
    Qiao, Zhonghua
    NUMERISCHE MATHEMATIK, 2013, 124 (01) : 99 - 119