Legendrian torus knots in S1 x S2

被引:4
|
作者
Chen, Feifei [1 ]
Ding, Fan [1 ,2 ]
Li, Youlin [3 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[2] Peking Univ, LMAM, Beijing 100871, Peoples R China
[3] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Legendrian knot; torus knot; twisting number; rotation number; convex torus; LENS SPACES; LINKS;
D O I
10.1142/S0218216515500649
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We classify Legendrian torus knots in S-1 x S-2 with its standard tight contact structure up to Legendrian isotopy.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Trajectory Tracking for Quadrotors with Attitude Control on S2 x S1
    Kooijman, Dave
    Schoellig, Angela P.
    Antunes, Duarte J.
    2019 18TH EUROPEAN CONTROL CONFERENCE (ECC), 2019, : 4002 - 4009
  • [42] FAKE HOMOTOPY STRUCTURE ON S3 BY S1 = S2 BY S2
    SCHARLEM.MG
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (04): : A455 - A455
  • [43] Fourier Transforms of Bounded Bilinear Forms on C~*(S1)×C~*(S2) of Foundation *-semigroups S1 and S2
    M.LASHKARIZADEH BAMI
    ActaMathematicaSinica(EnglishSeries), 2008, 24 (03) : 439 - 454
  • [44] Fourier transforms of bounded bilinear forms on C*(S1)×C*(S2) of foundation *-semigroups S1 and S2
    M. Lashkarizadeh Bami
    Acta Mathematica Sinica, English Series, 2008, 24 : 439 - 454
  • [45] Permutation polynomials (xPm - x + δ)s1 + (xPm - x + δ)s2 + x over Fpn
    Li, Lisha
    Wang, Shi
    Li, Chaoyun
    Zeng, Xiangyong
    FINITE FIELDS AND THEIR APPLICATIONS, 2018, 51 : 31 - 61
  • [46] Fuchsian analysis of S2 x S1 and S3 Gowdy spacetimes
    Ståhl, F
    CLASSICAL AND QUANTUM GRAVITY, 2002, 19 (17) : 4483 - 4504
  • [47] Functional Description of S1 x S2 and S3 Gowdy Cosmologies
    Gomez Vergel, Daniel
    Villasenor, Eduardo J. S.
    WORKSHOP ON HIGHER SYMMETRIES IN PHYSICS, 2009, 175
  • [48] 盘点S1、S2、S3
    Going Down
    电子竞技, 2017, (20) : 50 - 55
  • [49] S端子和S1、S2端子
    范国君
    实用电子文摘, 1997, (05) : 37 - 37
  • [50] On Turán number for S1∪S2
    Li, Jia-Yun
    Li, Sha-Sha
    Yin, Jian-Hua
    Applied Mathematics and Computation, 2021, 385