Aligned collagen scaffold combination with human spinal cord-derived neural stem cells to improve spinal cord injury repair

被引:65
|
作者
Zou, Yunlong [1 ,2 ]
Ma, Dezun [2 ]
Shen, He [2 ,3 ]
Zhao, Yannan [2 ]
Xu, Bai [2 ]
Fan, Yongheng [2 ]
Sun, Zheng [2 ]
Chen, Bing [2 ]
Xue, Weiwei [2 ]
Shi, Ya [2 ]
Xiao, Zhifeng [2 ]
Gu, Rui [1 ]
Dai, Jianwu [2 ,3 ]
机构
[1] Jilin Univ, China Japan Union Hosp, 126 Xiantai St, Changchun 130033, Peoples R China
[2] Chinese Acad Sci, Inst Genet & Dev Biol, State Key Lab Mol Dev Biol, 3 Nanyitiao, Beijing 100101, Peoples R China
[3] Chinese Acad Sci, Key Lab Nanobio Interface Res, Div Nanobiomed, Suzhou Inst Nanotech & Nanobion, Suzhou 215123, Peoples R China
基金
中国国家自然科学基金;
关键词
CENTRAL-NERVOUS-SYSTEM; FUNCTIONAL RECOVERY; HOX GENES; TRANSPLANTATION; REGENERATION; THERAPY; MODEL; DIFFERENTIATION; NEUROGENESIS; TRANSECTION;
D O I
10.1039/d0bm00431f
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Neural stem/progenitor cell (NSPC)-based spinal cord injury (SCI) therapy is expected to bridge the lesion site by transplanting exogenous NSPCs for replacement of lost cells. The transplanted NSPCs produce a microenvironment conducive to neuronal regeneration, and ultimately, functional recovery. Although both human fetal brain- and spinal cord- derived NSPCs (hbNSPCs and hscNSPCs, respectively) have been used for SCI repair, it remains unclear whether hscNSPCs are a more appropriate stem cell source for transplantation than hbNSPCs. Therefore, in this study, we transplanted hbNSPCs or hscNSPCs into rats with complete transection SCI to monitor their differences in SCI treatment. An aligned collagen sponge scaffold (ACSS) was used here for cell retention. Aligned biomaterial scaffolds provide a support platform and favorable morphology for cell growth and differentiation, and guide axial axonal extension. The ACSS fabricated by our group has been previously reported to improve spinal cord repair by promoting neuronal regeneration and remyelination. Compared with the hbNSPC-ACSS, the hscNSPC-ACSS effectively promoted long-term cell survival and neuronal differentiation and improved the SCI microenvironment by reducing inflammation and glial scar formation. Furthermore, the transplanted hscNSPC-ACSS improved recovery of locomotor functions. Therefore, hscNSPCs appear to be a superior cell source to hbNSPCs for SCI cell therapy with greater potential clinical applications.
引用
收藏
页码:5145 / 5156
页数:12
相关论文
共 50 条
  • [12] Human neural stem cells in chronic spinal cord injury
    Curt, Armin
    EXPERT OPINION ON BIOLOGICAL THERAPY, 2012, 12 (03) : 271 - 273
  • [13] NEURAL STEM CELLS AND SPINAL CORD INJURY
    Li Jintao
    神经解剖学杂志, 2007, (02) : 214 - 220
  • [14] The roles and applications of neural stem cells in spinal cord injury repair
    Guo, Wen
    Zhang, Xindan
    Zhai, Jiliang
    Xue, Jiajia
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2022, 10
  • [15] Role of Endogenous Neural Stem Cells in Spinal Cord Injury and Repair
    Stenudd, Moa
    Sabelstroem, Hanna
    Frisen, Jonas
    JAMA NEUROLOGY, 2015, 72 (02) : 235 - 237
  • [16] Biomimetic Electrospun PLLA/PPSB Nanofibrous Scaffold Combined with Human Neural Stem Cells for Spinal Cord Injury Repair
    Dai, Yuan
    Wang, Weizhong
    Zhou, Xiaojun
    li, Linli
    Tang, Yuyi
    Shao, Minghao
    Lyu, Feizhou
    ACS APPLIED NANO MATERIALS, 2023, 6 (07) : 5980 - 5993
  • [17] miR-NPs-RVG promote spinal cord injury repair: implications from spinal cord-derived microvascular endothelial cells
    Li, Chao
    Xiang, Zhenyang
    Hou, Mengfan
    Yu, Hao
    Peng, Peng
    Lv, Yigang
    Ma, Chao
    Ding, Han
    Jiang, Yunpeng
    Liu, Yang
    Zhou, Hengxing
    Feng, Shiqing
    JOURNAL OF NANOBIOTECHNOLOGY, 2024, 22 (01)
  • [18] Collagen scaffold combined with human umbilical cord-mesenchymal stem cells transplantation for acute complete spinal cord injury
    Deng, Wu-Sheng
    Ma, Ke
    Liang, Bing
    Liu, Xiao-Yin
    Xu, Hui-You
    Zhang, Jian
    Shi, Heng-Yuan
    Sun, Hong-Tao
    Chen, Xu-Yi
    Zhang, Sai
    NEURAL REGENERATION RESEARCH, 2020, 15 (09) : 1686 - 1700
  • [19] Cetuximab modified collagen scaffold directs neurogenesis of injury-activated endogenous neural stem cells for acute spinal cord injury repair
    Li, Xing
    Zhao, Yannan
    Cheng, Shixiang
    Han, Sufang
    Shu, Muya
    Chen, Bing
    Chen, Xuyi
    Tang, Fengwu
    Wang, Nuo
    Tu, Yue
    Wang, Bin
    Xiao, Zhifeng
    Zhang, Sai
    Dai, Jianwu
    BIOMATERIALS, 2017, 137 : 73 - 86
  • [20] Collagen scaffold combined with human umbilical cord-mesenchymal stem cells transplantation for acute complete spinal cord injury
    Wu-Sheng Deng
    Ke Ma
    Bing Liang
    Xiao-Yin Liu
    Hui-You Xu
    Jian Zhang
    Heng-Yuan Shi
    Hong-Tao Sun
    Xu-Yi Chen
    Sai Zhang
    Neural Regeneration Research, 2020, 15 (09) : 1686 - 1700