Dissipativity of Multistep Runge-Kutta Methods for Nonlinear Volterra Delay-integro-differential Equations

被引:8
|
作者
Qi, Rui [1 ,2 ]
Zhang, Cheng-jian [2 ]
Zhang, Yu-jie [3 ]
机构
[1] Naval Univ Engn, Sch Sci, Wuhan 430033, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R China
[3] China Univ Geosci, Sch Math & Phys, Wuhan 430074, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Volterra delay-integro-differential equations; multistep Runge-Kutta methods; dissipativity; (k; l)-algebraically stable; DYNAMICAL-SYSTEMS; THETA-METHODS;
D O I
10.1007/s10255-012-0142-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the numerical dissipativity of multistep Runge-Kutta methods for nonlinear Volterra delay-integro-differential equations. We investigate the dissipativity properties of (k,l)-algebraically stable multistep Runge-Kutta methods with constrained grid and an uniform grid. The finite-dimensional and infinite-dimensional dissipativity results of (k,l)-algebraically stable Runge-Kutta methods are obtained.
引用
收藏
页码:225 / 236
页数:12
相关论文
共 50 条