Knot invariants with multiple skein relations

被引:1
|
作者
Yang, Zhiqing [1 ]
机构
[1] Dalian Univ Technol, Dept Math, Dalian, Peoples R China
关键词
Knot invariant; knot polynomial; skein relation; diamond lemma; LINKS;
D O I
10.1142/S0218216518500177
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given any oriented link diagram, one can construct knot invariants using skein relations. Usually such a skein relation contains three or four terms. In this paper, the author introduces several new ways to smooth a crossings, and uses a system of skein equations to construct link invariants. This invariant can also be modified by writhe to get a more powerful invariant. The modified invariant is a generalization of both the HOMFLYPT polynomial and the two-variable Kauffman polynomial. Using the diamond lemma, a simplified version of the modified invariant is given. It is easy to compute and is a generalization of the two-variable Kauffman polynomial.
引用
收藏
页数:33
相关论文
共 50 条
  • [41] Skein relations for spin networks, modifed
    Kocik, Jerzy
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2018, 27 (07)
  • [42] Knot invariants for rail knotoids
    Kodokostas, Dimitrios
    Lambropoulou, Sofia
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2023, 32 (06)
  • [43] Holomorphic disks and knot invariants
    Ozsváth, P
    Szabó, Z
    ADVANCES IN MATHEMATICS, 2004, 186 (01) : 58 - 116
  • [44] Knot invariants and topological strings
    Ooguri, H
    Vafa, C
    NUCLEAR PHYSICS B, 2000, 577 (03) : 419 - 438
  • [45] Hidden structures of knot invariants
    Sleptsov, Alexey
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2014, 29 (29):
  • [46] Cocyclic Quasoid Knot Invariants
    Ph. G. Korablev
    Siberian Mathematical Journal, 2020, 61 : 271 - 289
  • [47] Knot Invariants in Geodesic Flows
    P. M. Akhmet’ev
    Proceedings of the Steklov Institute of Mathematics, 2020, 308 : 42 - 55
  • [48] Noncompact quantum knot invariants
    Dimofte, T. D.
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2009, 192-93 : 136 - 137
  • [49] Knot Invariants in Geodesic Flows
    Akhmet'ev, P. M.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2020, 308 (01) : 42 - 55
  • [50] String theory and knot invariants
    Marino, Marcos
    PROSPECTS IN MATHEMATICAL PHYSICS, 2007, 437 : 199 - 207