Multiscaling in the randomly forced and conventional Navier-Stokes equations

被引:0
|
作者
Sain, A
Pandit, R [1 ]
机构
[1] Indian Inst Sci, Dept Phys, Bangalore 560012, Karnataka, India
[2] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada
[3] Indian Inst Sci, Jawaharlal Nehru Ctr Adv Sci Res, Bangalore 560012, Karnataka, India
基金
加拿大自然科学与工程研究理事会;
关键词
fluid turbulence; Navier-Stokes equation; randomly forced Navier-Stokes equation;
D O I
10.1016/S0378-4371(99)00119-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present an overview of some results we have obtained recently (A. Sain, Manu and R. Pandit, Phys. Rev. Lett. 81 (1998) 4377) from a pseudospectral study of the randomly forced Navier-Stokes equation (RFNSE) stirred by a stochastic force with zero mean and a variance similar to k(4-d-y). With k the wavevector and the dimension d = 3, These include the multiscaling of velocity structure functions for y greater than or equal to 4 and a demonstration that the multiscaling exponent ratios zeta(p)/zeta(2) for y = 4 are in agreement, with those obtained for the Navier-Stokes equation forced at large spatial scales (3dNSE). We also study a coarse-graining procedure for the 3aNSE and examine why it does not lead to the RFNSE. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:190 / 203
页数:14
相关论文
共 50 条
  • [21] Ergodicity for the Randomly Forced Navier-Stokes System in a Two-Dimensional Unbounded Domain
    Nersesyan, Vahagn
    ANNALES HENRI POINCARE, 2022, 23 (06): : 2277 - 2294
  • [22] Recasting Navier-Stokes equations
    Reddy, M. H. Lakshminarayana
    Dadzie, S. Kokou
    Ocone, Raffaella
    Borg, Matthew K.
    Reese, Jason M.
    JOURNAL OF PHYSICS COMMUNICATIONS, 2019, 3 (10):
  • [23] NAVIER-STOKES EQUATIONS ON THE β-PLANE
    Al-Jaboori, Mustafa A. H.
    Wirosoetisno, Djoko
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2011, 16 (03): : 687 - 701
  • [24] FLUCTUATIONS IN NAVIER-STOKES EQUATIONS
    PAPANICOLAOU, GC
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (01): : A236 - A236
  • [25] TRANSFORMATION OF NAVIER-STOKES EQUATIONS
    ROGERS, DF
    GRANGER, RA
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1971, 16 (11): : 1331 - &
  • [26] FRACTIONAL NAVIER-STOKES EQUATIONS
    Cholewa, Jan W.
    Dlotko, Tomasz
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (08): : 2967 - 2988
  • [27] NAVIER-STOKES EQUATIONS PARADOX
    Ramm, Alexander G.
    REPORTS ON MATHEMATICAL PHYSICS, 2021, 88 (01) : 41 - 45
  • [28] STOCHASTIC NAVIER-STOKES EQUATIONS
    CAPINSKI, M
    CUTLAND, N
    ACTA APPLICANDAE MATHEMATICAE, 1991, 25 (01) : 59 - 85
  • [29] Euler and Navier-Stokes equations
    Constantin, Peter
    PUBLICACIONS MATEMATIQUES, 2008, 52 (02) : 235 - 265
  • [30] On the Navier-Stokes equations on surfaces
    Pruess, Jan
    Simonett, Gieri
    Wilke, Mathias
    JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (03) : 3153 - 3179