Large-scale regression with non-convex loss and penalty

被引:16
|
作者
Buccini, Alessandro [1 ]
Cabrera, Omar De la Cruz [2 ]
Donatelli, Marco [3 ]
Martinelli, Andrea [3 ]
Reichel, Lothar [2 ]
机构
[1] Univ Cagliari, Dept Math & Comp Sci, I-09124 Cagliari, Italy
[2] Kent State Univ, Dept Math Sci, Kent, OH 44242 USA
[3] Univ Insubria, Dept Sci & High Technol, I-22100 Como, Italy
关键词
Regression; Regularization; Robustness; Non-convex Optimization; MINIMIZATION; REGULARIZATION; SHRINKAGE; ALGORITHM; SPARSITY;
D O I
10.1016/j.apnum.2020.07.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe a computational method for parameter estimation in linear regression, that is capable of simultaneously producing sparse estimates and dealing with outliers and heavy-tailed error distributions. The method used is based on the image restoration method proposed in Huang et al. (2017) [13]. It can be applied to problems of arbitrary size. The choice of certain parameters is discussed. Results obtained for simulated and real data are presented. (C) 2020 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:590 / 601
页数:12
相关论文
共 50 条
  • [31] Distributed non-convex regularization for generalized linear regression
    Sun, Xiaofei
    Zhang, Jingyu
    Liu, Zhongmo
    Polat, Kemal
    Gai, Yujie
    Gao, Wenliang
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 252
  • [32] Distributed Quantile Regression with Non-Convex Sparse Penalties
    Mirzaeifard, Reza
    Gogineni, Vinay Chakravarthi
    Venkategowda, Naveen K. D.
    Werner, Stefan
    2023 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP, SSP, 2023, : 250 - 254
  • [33] Non-convex isotonic regression via the Myersonian approach
    Cui, Zhenyu
    Lee, Chihoon
    Zhu, Lingjiong
    Zhu, Yunfan
    STATISTICS & PROBABILITY LETTERS, 2021, 179
  • [34] Gene selection using support vector machines with non-convex penalty
    Zhang, HH
    Ahn, J
    Lin, XD
    Park, C
    BIOINFORMATICS, 2006, 22 (01) : 88 - 95
  • [35] Nesting of non-convex figures in non-convex contours
    Vinade, C.
    Dias, A.
    Informacion Tecnologica, 2000, 11 (01): : 149 - 156
  • [36] A Probabilistic Structural Damage Identification Method with a Generic Non-Convex Penalty
    Li, Rongpeng
    Yi, Wen
    Wang, Fengdan
    Xiao, Yuzhu
    Deng, Qingtian
    Li, Xinbo
    Song, Xueli
    MATHEMATICS, 2024, 12 (08)
  • [37] Zero-Norm ELM with Non-convex Quadratic Loss Function for Sparse and Robust Regression
    Xiaoxue Wang
    Kuaini Wang
    Yanhong She
    Jinde Cao
    Neural Processing Letters, 2023, 55 : 12367 - 12399
  • [38] Zero-Norm ELM with Non-convex Quadratic Loss Function for Sparse and Robust Regression
    Wang, Xiaoxue
    Wang, Kuaini
    She, Yanhong
    Cao, Jinde
    NEURAL PROCESSING LETTERS, 2023, 55 (09) : 12367 - 12399
  • [39] Global optimization of non-convex piecewise linear regression splines
    Martinez, Nadia
    Anahideh, Hadis
    Rosenberger, Jay M.
    Martinez, Diana
    Chen, Victoria C. P.
    Wang, Bo Ping
    JOURNAL OF GLOBAL OPTIMIZATION, 2017, 68 (03) : 563 - 586
  • [40] Global optimization of non-convex piecewise linear regression splines
    Nadia Martinez
    Hadis Anahideh
    Jay M. Rosenberger
    Diana Martinez
    Victoria C. P. Chen
    Bo Ping Wang
    Journal of Global Optimization, 2017, 68 : 563 - 586