Determination of contact angle by molecular simulation using number and atomic density contours

被引:35
|
作者
Peng, Hong [1 ]
Nguyen, Anh V. [1 ]
Birkett, Greg R. [1 ]
机构
[1] Univ Queensland, Sch Chem Engn, Brisbane, Qld 4072, Australia
基金
澳大利亚研究理事会;
关键词
contact angle; molecular simulation; nano-droplets; Lennard-Jones fluid; DYNAMICS SIMULATION; COMPUTER-SIMULATION; CARBON NANOTUBES; SURFACE-TENSION; SOLID-SURFACE; WATER; LIQUID; DROPLETS;
D O I
10.1080/08927022.2012.678846
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The contact angles of Lennard-Jones fluid droplets on a structureless solid surface, simulated using Monte Carlo simulation, are calculated by fitting isochoric surfaces and making a number of assumptions about the droplet. The results show that there are significant uncertainties in the calculated contact angles due to the choice of these assumptions, such as the grid size used in tracking the isochoric density profile, the omission of isochoric data points near the surface and the function used to fit the isochoric profile. In this study, we propose a new method of calculating density contours based on atomic density instead of number density. This method results in a much smaller variation in contact angle when applying different assumptions than using number density for isochoric contours. The most consistent results, across a range of assumptions about the droplet and the contact angle, come from averaging the contact angle from several isochoric density profiles. In addition, this gives a measurement of the variation due to the choice of isochoric density.
引用
收藏
页码:945 / 952
页数:8
相关论文
共 50 条
  • [21] Comparative characterization of chip to epoxy interfaces by molecular modeling and contact angle determination
    Hoelck, O.
    Bauer, J.
    Wittler, O.
    Michel, B.
    Wunderle, B.
    MICROELECTRONICS RELIABILITY, 2012, 52 (07) : 1285 - 1290
  • [22] Technique to measure contact angle of micro/nanodroplets using atomic force microscopy
    Jung, Yong Chae
    Bhushan, Bharat
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2008, 26 (04): : 777 - 782
  • [23] Numerical simulation of dynamic contact angle using a force based formulation
    Deganello, D.
    Croft, T. N.
    Williams, A. J.
    Lubansky, A. S.
    Gethin, D. T.
    Claypole, T. C.
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2011, 166 (16) : 900 - 907
  • [24] Investigation of the Dynamic Contact Angle Using a Direct Numerical Simulation Method
    Zhu, Guangpu
    Yao, Jun
    Zhang, Lei
    Sun, Hai
    Li, Aifen
    Shams, Bilal
    LANGMUIR, 2016, 32 (45) : 11736 - 11744
  • [25] Determination of ball bearing contact angle using a scanning acoustic microscope
    Chirkov, V. Yu.
    Petrov, V. V.
    Lapin, S. A.
    RUSSIAN JOURNAL OF NONDESTRUCTIVE TESTING, 2011, 47 (02) : 122 - 129
  • [26] Determination of the surface tension of microporous membranes using contact angle measurements
    Troger, J
    Lunkwitz, K
    Burger, W
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1997, 194 (02) : 281 - 286
  • [27] DETERMINATION OF ATOMIC NUMBER AND ELECTRON-DENSITY OF BIOMATERIALS BY DUAL-ENERGY TOMOGRAPHY
    RODER, FL
    HUANG, HK
    CERRONI, M
    BIOPHYSICAL JOURNAL, 1978, 21 (03) : A158 - A158
  • [28] Determination of ball bearing contact angle using a scanning acoustic microscope
    V. Yu. Chirkov
    V. V. Petrov
    S. A. Lapin
    Russian Journal of Nondestructive Testing, 2011, 47 : 122 - 129
  • [29] Temperature determination using molecular spectra simulation
    Pellerin, S
    Koulidiati, J
    Motret, O
    Musiol, K
    De Graaf, M
    Pokrzywka, B
    Chapelle, J
    HIGH TEMPERATURE MATERIAL PROCESSES, 1997, 1 (04): : 493 - 509
  • [30] Quantitative determination of contact stiffness using atomic force acoustic microscopy
    Rabe, U
    Amelio, S
    Kester, E
    Scherer, V
    Hirsekorn, S
    Arnold, W
    ULTRASONICS, 2000, 38 (1-8) : 430 - 437