A performance bound for manoeuvring target tracking using best-fitting Gaussian distributions

被引:0
|
作者
Hernandez, ML [1 ]
Ristic, B [1 ]
Farina, A [1 ]
机构
[1] QinetiQ Ltd, Malvern Technol Ctr, Malvern WR14 3PS, Worcs, England
关键词
posterior Cramer-Rao lower bound; manoeuvring target tracking; coordinated turn; nearly constant velocity; constant acceleration; best fitting Gaussian approximation; variable structure interacting multiple model filter;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we consider the problem of calculating the Posterior Cramer-Rao Lower Bound (PCRLB) in the case of tracking a manoeuvring target. In a recent article [11 the authors calculated the PCRLB conditional on the manoeuvre sequence and then determined the bound as a weighted average, giving,an unconditional PCRLB (referred to herein as the Enumer-PCRLB). However, we argue that this approach can produce an optimistic lower bound because the sequence of manoeuvres is implicitly assumed known. Indeed, in simulations we show that in tracking a target that can switch between a nearly constant-velocity (NCV) model and a coordinated turn (CT) model, the Enumer-PCRLB can be lower than the PCRLB in the case of tracking a target whose motion is governed purely by the NCV model. Motivated by this, in this paper we develop a general approach to calculating the manoeuvring target PCRLB based on utilizing best-fitting Gaussian distributions. The basis of the technique is, at each stage, to approximate the multi-modal prior target probability density function using a best-fitting Gaussian distribution. We present a recursive formula for calculating the mean and covariance of this Gaussian distribution, and demonstrate how the covariance increases as a result of the potential manoeuvres. We are then able to calculate the PCRLB using a standard Riccati-like recursion. Returning to our previous example, we show that this best-fitting Gaussian approach gives a bound that shows the correct qualitative behavior, namely that the bound is greater when the target can manoeuvre. Moreover, for simulated scenarios taken from [11, we show that the best-fitting Gaussian PCRLB is both greater than the existing bound (the Enumer-PCRLB) and more consistent with the performance of the variable structure interacting multiple model (VS-IMM) tracker utilized therein.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 50 条
  • [41] Multi-Target Tracking Using an Improved Gaussian Mixture CPHD Filter
    Si, Weijian
    Wang, Liwei
    Qu, Zhiyu
    SENSORS, 2016, 16 (11)
  • [42] Maneuvering target tracking using the nonlinear non-Gaussian Kalman filter
    Bilik, I.
    Tabrikian, J.
    2006 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-13, 2006, : 3175 - 3178
  • [43] Position error modeling using Gaussian mixture distributions with application to comparison of tracking algorithms
    Trailovic, L
    Pao, LY
    PROCEEDINGS OF THE 2003 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2003, : 1272 - 1277
  • [44] Cramer-Rao bound for multiple target tracking using intensity measurements
    Ristic, Branko
    Morelande, Mark
    2007 INFORMATION DECISION AND CONTROL, 2007, : 66 - +
  • [45] A measurement set partitioning for extended target tracking using a gaussian mixture extended-target gaussian mixture probability hypothesis density filter
    Kong, Yunbo
    Feng, Xinxi
    Wei, Zhang
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2015, 49 (07): : 126 - 133
  • [46] Development and Analysis of COMS AMV Target Tracking Algorithm using Gaussian Cluster Analysis
    Oh, Yurim
    Kim, Jae Hwan
    Park, Hyungmin
    Baek, Kanghyun
    KOREAN JOURNAL OF REMOTE SENSING, 2015, 31 (06) : 531 - 548
  • [47] Maneuvering Target Tracking in the Presence of Glint using the Nonlinear Gaussian Mixture Kalman Filter
    Bilik, I.
    Tabrikian, J.
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2010, 46 (01) : 246 - 262
  • [48] AN ADAPTIVE LIKELIHOOD FUSION METHOD USING DYNAMIC GAUSSIAN MODEL FOR INDOOR TARGET TRACKING
    Zhao, Yubin
    Yang, Yuan
    Kyas, Marcel
    2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [49] Extended Target Tracking Using Gaussian Processes with High-Resolution Automotive Radar
    Thormann, Kolja
    Honer, Jens
    Baum, Marcus
    2018 21ST INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2018, : 1764 - 1770
  • [50] Target Tracking Algorithm Using Square-Root Gaussian Kernel Quadrature Filter
    Wang, Jiabao
    Chen, Shuxin
    Wu, Hao
    He, Renke
    Xu, Han
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2022, 56 (04): : 157 - 164