A nonlinear transformation and a boundary-initial value problem for a class of nonlinear convection-diffusion equations

被引:1
|
作者
Wang, ML
Jiang, SG
Bai, X
机构
[1] Lanzhou Univ, Dept Math, Lanzhou 730000, Peoples R China
[2] Southeastern Univ, Dept Math, Nanjing 210096, Peoples R China
[3] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
关键词
nonlinear transformation; convection-diffusion PDE; boundary-initial value problem; exact explicit solutions;
D O I
10.1016/S0252-9602(17)30584-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
With the aid of a nonlinear transformation, a class of nonlinear convection-diffusion PDE in one space dimension is converted into a linear one, the unique solution of a nonlinear boundary-initial value problem for the nonlinear PDE can be exactly expressed by the nonlinear transformation, and several illustrative examples are given.
引用
收藏
页码:114 / 120
页数:7
相关论文
共 50 条
  • [31] Retrieval of Initial Value and Estimation of Parameter for Nonlinear Convection-Diffusion Problem Based on Variational Adjoint Method: Numerical Experiments
    Wang, Yue-peng
    Tao, Su-Lin
    Lu, Chang-Na
    PROCEEDINGS OF THE 2010 INTERNATIONAL CONFERENCE ON APPLICATION OF MATHEMATICS AND PHYSICS, VOL 1: ADVANCES ON SPACE WEATHER, METEOROLOGY AND APPLIED PHYSICS, 2010, : 43 - 47
  • [32] Adaptive Reduced Basis Methods for Nonlinear Convection-Diffusion Equations
    Drohmann, Martin
    Haasdonk, Bernard
    Ohlberger, Mario
    FINITE VOLUMES FOR COMPLEX APPLICATIONS VI: PROBLEMS & PERSPECTIVES, VOLS 1 AND 2, 2011, 4 : 369 - +
  • [33] CONTINUOUS DEPENDENCE ESTIMATES FOR NONLINEAR FRACTIONAL CONVECTION-DIFFUSION EQUATIONS
    Alibaud, Nathael
    Cifani, Simone
    Jakobsen, Espen R.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2012, 44 (02) : 603 - 632
  • [34] A study of solvers for nonlinear AFC discretizations of convection-diffusion equations
    Jha, Abhinav
    John, Volker
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (09) : 3117 - 3138
  • [35] A UNIQUENESS CONDITION FOR NONLINEAR CONVECTION-DIFFUSION EQUATIONS WITH DISCONTINUOUS COEFFICIENTS
    Diehl, Stefan
    JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2009, 6 (01) : 127 - 159
  • [36] Rectangular lattice Boltzmann model for nonlinear convection-diffusion equations
    Lu, Jianhua
    Chai, Zhenhua
    Shi, Baochang
    Guo, Zhaoli
    Hou, Guoxiang
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2011, 369 (1944): : 2311 - 2319
  • [37] Lattice Boltzmann simulation of some nonlinear convection-diffusion equations
    Shi, Baochang
    Guo, Zhaoli
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (12) : 3443 - 3452
  • [39] On boundary value problem for a class of retarded nonlinear partial differential equations
    Rezounenko, A
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 254 (02) : 515 - 523
  • [40] A boundary value problem for one class of nonlinear degenerate parabolic equations
    O. V. Gorevchuk
    Siberian Mathematical Journal, 1997, 38 : 1057 - 1073