Innovated scalable dynamic learning for time-varying graphical models

被引:0
|
作者
Zheng, Zemin [1 ]
Li, Liwan [1 ]
Zhou, Jia [1 ]
Kong, Yinfei [2 ]
机构
[1] Univ Sci & Technol China, Sch Management, Hefei, Anhui, Peoples R China
[2] Calif State Univ Fullerton, Dept Informat Syst & Decis Sci, Fullerton, CA 92634 USA
基金
中国国家自然科学基金;
关键词
Time-varying graphical models; Precision matrix estimation; Scalability; Kernel smoothing; PRECISION MATRIX ESTIMATION; SPARSE; SELECTION; LASSO;
D O I
10.1016/j.spl.2020.108843
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we propose a new approach of innovated scalable dynamic learning (ISDL) for estimating time-varying graphical structures. Motivated by the innovated transformation, we convert the original problem into large covariance matrix estimation and exploit the scaled Lasso with kernel smoothing to simplify the tuning procedure. In addition, we show that our method has theoretical guarantees under mild regularity conditions for accurate estimation of each precision matrix. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:6
相关论文
共 50 条
  • [11] Time-varying extreme pattern with dynamic models
    Fernando Ferraz do Nascimento
    Dani Gamerman
    Hedibert Freitas Lopes
    TEST, 2016, 25 : 131 - 149
  • [12] Post-regularization inference for time-varying nonparanormal graphical models
    Lu, Junwei
    Kolar, Mladen
    Liu, Han
    Journal of Machine Learning Research, 2018, 18 : 1 - 78
  • [13] Post-Regularization Inference for Time-Varying Nonparanormal Graphical Models
    Lu, Junwei
    Kolar, Mladen
    Liu, Han
    JOURNAL OF MACHINE LEARNING RESEARCH, 2018, 18
  • [14] Structured sequential Gaussian graphical models for monitoring time-varying process
    Liu, Yi
    Zeng, Jiusun
    Xie, Lei
    Kruger, Uwe
    Luo, Shihua
    Su, Hongye
    CONTROL ENGINEERING PRACTICE, 2019, 91
  • [15] Dynamic Factor Analysis Models With Time-Varying Parameters
    Chow, Sy-Miin
    Zu, Jiyun
    Shifren, Kim
    Zhang, Guangjian
    MULTIVARIATE BEHAVIORAL RESEARCH, 2011, 46 (02) : 303 - 339
  • [16] Estimation of time-varying parameters in deterministic dynamic models
    Chen, Jianwei
    Wu, Hulin
    STATISTICA SINICA, 2008, 18 (03) : 987 - 1006
  • [17] Estimation of time-varying coefficient dynamic panel data models
    Hayakawa, Kazuhiko
    Hou, Jie
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2019, 48 (13) : 3311 - 3324
  • [18] mgm: Estimating Time-Varying Mixed Graphical Models in High-Dimensional Data
    Haslbeck, Jonas M. B.
    Waldorp, Lourens J.
    JOURNAL OF STATISTICAL SOFTWARE, 2020, 93 (08):
  • [19] Dynamic Federated Learning for GMEC With Time-Varying Wireless Link
    Zhai, Shaolei
    Jin, Xin
    Wei, Ling
    Luo, Hongxuan
    Cao, Min
    IEEE ACCESS, 2021, 9 : 10400 - 10412
  • [20] Stochastic Online Learning under Unknown Time-Varying Models
    Tehrani, Pouya
    Zhao, Qing
    2012 CONFERENCE RECORD OF THE FORTY SIXTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS (ASILOMAR), 2012, : 1046 - 1050