Quantitative test of the time dependent Gintzburg-Landau equation for sheared granular flow in two dimensions

被引:6
|
作者
Saitoh, Kuniyasu [1 ]
Hayakawa, Hisao [2 ]
机构
[1] Univ Twente, Fac Engn Technol, NL-7500 AE Enschede, Netherlands
[2] Kyoto Univ, Yukawa Inst Theoret Phys, Sakyo Ku, Kyoto 606, Japan
关键词
PLANE COUETTE-FLOW; INELASTIC HARD-SPHERES; KINETIC-THEORY; BANDING INSTABILITY; DENSE GAS; STABILITY; FLUID; SYSTEM; DISKS; COMPUTER;
D O I
10.1063/1.4812816
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We examine the validity of the time-dependent Ginzburg-Landau equation of granular fluids for a plane shear flow under the Lees-Edwards boundary condition derived from a weakly nonlinear analysis through the comparison with the result of discrete element method. We verify quantitative agreements in the time evolution of the area fraction and the velocity fields, and also find qualitative agreement in the granular temperature. (C) 2013 AIP Publishing LLC.
引用
收藏
页数:12
相关论文
共 20 条
  • [1] Time Dependent Ginzburg-Landau Equation for Sheared Granular Flow
    Saitoh, Kuniyasu
    Hayakawa, Hisao
    28TH INTERNATIONAL SYMPOSIUM ON RAREFIED GAS DYNAMICS 2012, VOLS. 1 AND 2, 2012, 1501 : 1001 - 1008
  • [2] Derivation of the Time Dependent Gross–Pitaevskii Equation in Two Dimensions
    Maximilian Jeblick
    Nikolai Leopold
    Peter Pickl
    Communications in Mathematical Physics, 2019, 372 : 1 - 69
  • [3] Derivation of the Time Dependent Gross-Pitaevskii Equation in Two Dimensions
    Jeblick, Maximilian
    Leopold, Nikolai
    Pickl, Peter
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 372 (01) : 1 - 69
  • [4] Numerical solutions of the time-dependent Schrodinger equation in two dimensions
    van Dijk, Wytse
    Vanderwoerd, Trevor
    Prins, Sjirk-Jan
    PHYSICAL REVIEW E, 2017, 95 (02)
  • [5] Time-dependent Ginzburg-Landau equation for the jamming transition in traffic flow
    Nagatani, T
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1998, 258 (1-2) : 237 - 242
  • [6] Time-dependent Landau system and non-adiabatic Berry phase in two dimensions
    Jing, H
    Wu, JS
    CHINESE PHYSICS, 2000, 9 (07): : 481 - 484
  • [7] Generalized time-dependent Schrodinger equation in two dimensions under constraints
    Sandev, Trifce
    Petreska, Irina
    Lenzi, Ervin K.
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (01)
  • [8] The time-dependent Ginzburg-Landau equation for the two-velocity difference model
    吴淑贞
    程荣军
    葛红霞
    Chinese Physics B, 2011, 20 (08) : 134 - 139
  • [9] The time-dependent Ginzburg-Landau equation for the two-velocity difference model
    Wu Shu-Zhen
    Cheng Rong-Jun
    Ge Hong-Xia
    CHINESE PHYSICS B, 2011, 20 (08)
  • [10] SOLUTION OF THE LINEAR DIFFUSION EQUATION WITH A TIME DEPENDENT DIFFUSION COEFFICIENT, IN TWO AND THREE DIMENSIONS
    Skianis, Georgios Aim.
    Verikiou, Efthimia
    ADVANCES IN DIFFERENTIAL EQUATIONS AND CONTROL PROCESSES, 2010, 5 (01): : 37 - 47