RATE OF CONVERGENCE UNDER WEAK CONTRACTIVENESS CONDITIONS

被引:0
|
作者
Ariza-Ruiz, David [1 ]
Martol Briseid, Eyvind [2 ]
Jimenez-Melado, Antonio [3 ]
Lopez-Acedo, Genaro [1 ]
机构
[1] Univ Seville, Fac Matemat, Dept Anal Matemat, E-41080 Seville, Spain
[2] Univ Oslo, Dept Math, N-0316 Oslo, Norway
[3] Univ Malaga, Fac Ciencias, Dept Anal Matemat, E-29071 Malaga, Spain
来源
FIXED POINT THEORY | 2013年 / 14卷 / 01期
关键词
Cauchy rate; weakly Zamfirescu maps; weakly contractive maps; quasi-contraction maps; modulus of uniqueness; rate of convergence; fixed points;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a new class of selfrnaps T of metric spaces, which generalizes the weakly Zamfirescu maps (and therefore weakly contraction maps, weakly Kannan maps, weakly Chatterjea maps and quasi-contraction maps with constant h < 1/2). We give an explicit Cauchy rate for the Picard iteration sequences {T(n)x(0)}(n is an element of N) for this type of maps, and show that if the space is complete, then all Picard iteration sequences converge to the unique fixed point of T. Our Cauchy rate depends on the space (X, d), the map T, and the starting point x(0) is an element of X only through an upper bound b >= d(x(0),Tx(0)) and certain moduli theta, mu for the map, but is otherwise fully uniform. As a step on the way to proving our fixed point, result we also calculate a modulus of uniqueness for this type of maps.
引用
收藏
页码:11 / 27
页数:17
相关论文
共 50 条