High quality GaN grown on Si(111) by gas source molecular beam epitaxy with ammonia

被引:197
|
作者
Nikishin, SA [1 ]
Faleev, NN
Antipov, VG
Francoeur, S
Grave de Peralta, L
Seryogin, GA
Temkin, H
Prokofyeva, TI
Holtz, M
Chu, SNG
机构
[1] Texas Tech Univ, Dept Elect Engn, Lubbock, TX 79409 USA
[2] Texas Tech Univ, Dept Phys, Lubbock, TX 79409 USA
[3] Lucent Bell Labs, Murray Hill, NJ 07974 USA
关键词
D O I
10.1063/1.124920
中图分类号
O59 [应用物理学];
学科分类号
摘要
We describe the growth of hexagonal GaN on Si(111) by gas source molecular beam epitaxy with ammonia. The initial deposition of Al, at 1130-1190 K, resulted in a very rapid transition to a two-dimensional growth mode of AlN. The rapid transition is essential for the subsequent growth of high quality GaN and AlGaN. This procedure also resulted in complete elimination of cracking in thick (> 2 mu m) GaN layers. For layers thicker than 1.5 mu m, the full width at half maximum of the (0002) GaN diffraction peak was less than 14 arc sec. We show that a short period superlattice of AlGaN/GaN grown on the AlN buffer can be used to block defects propagating through GaN, resulting in good crystal and luminescence quality. At room temperature, the linewidth of the GaN exciton recombination peak was less than 40 meV, typical of the best samples grown on sapphire. (C) 1999 American Institute of Physics. [S0003- 6951(99)02140-3].
引用
收藏
页码:2073 / 2075
页数:3
相关论文
共 50 条
  • [31] Effect of Stress Mitigating Layers on the Structural Properties of GaN Grown by Ammonia Molecular Beam Epitaxy on 100 mm Si(111)
    Ravikiran, Lingaparthi
    Agrawal, Manvi
    Dharmarasu, Nethaji
    Radhakrishnan, K.
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2013, 52 (08)
  • [32] CdTe(111)B grown on Si(111) by molecular beam epitaxy
    Rujirawat, S
    Xin, Y
    Browning, ND
    Sivananthan, S
    Smith, DJ
    Tsen, SCY
    Chen, YP
    Nathan, V
    APPLIED PHYSICS LETTERS, 1999, 74 (16) : 2346 - 2348
  • [33] Formation of High-Quality GaN Microcrystals by Pendeoepitaxial Overgrowth of GaN Nanowires on Si(111) by Molecular Beam Epitaxy
    Dogan, Pinar
    Brandt, Oliver
    Pfueller, Carsten
    Laehnemann, Jonas
    Jahn, Uwe
    Roder, Claudia
    Trampert, Achim
    Geelhaar, Lutz
    Riechert, Henning
    CRYSTAL GROWTH & DESIGN, 2011, 11 (10) : 4257 - 4260
  • [34] GaN epilayers grown at high growth rate using gas source molecular beam epitaxy method
    Li, XB
    Sun, DZ
    Zhang, JP
    Kong, MY
    JOURNAL OF CRYSTAL GROWTH, 1998, 191 (1-2) : 31 - 33
  • [35] AlGaN/GaN high electron mobility transistor grown by molecular beam epitaxy on Si(110): comparisons with Si(111) and Si(001)
    Cordier, Y.
    Moreno, J. -C.
    Baron, N.
    Frayssinet, E.
    Chenot, S.
    Damilano, B.
    Semond, F.
    PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 6, SUPPL 2, 2009, 6 : S1020 - S1023
  • [36] Abnormal photoluminescence properties of GaN nanorods grown on Si(111) by molecular-beam epitaxy
    Park, Young S.
    Kang, Tae W.
    Taylor, R. A.
    NANOTECHNOLOGY, 2008, 19 (47)
  • [37] Photoluminescence studies of GaN nanorods on Si (111) substrates grown by molecular-beam epitaxy
    Park, YS
    Park, CM
    Fu, DJ
    Kang, TW
    Oh, JE
    APPLIED PHYSICS LETTERS, 2004, 85 (23) : 5718 - 5720
  • [38] Polarity of GaN nanowires grown by plasma-assisted molecular beam epitaxy on Si(111)
    Hestroffer, Karine
    Leclere, Cedric
    Bougerol, Catherine
    Renevier, Hubert
    Daudin, Bruno
    PHYSICAL REVIEW B, 2011, 84 (24)
  • [39] Origin of inversion domains in GaN/AlN/Si(111) heterostructures grown by molecular beam epitaxy
    Sanchez, AM
    Ruterana, P
    Molina, SI
    Pacheco, FJ
    Garcia, R
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 2002, 234 (03): : 935 - 938
  • [40] Quality and uniformity assessment of AlGaN/GaN quantum wells and HEMT heterostructures grown by molecular beam epitaxy with ammonia source
    Cordier, Y.
    Pruvost, F.
    Semond, F.
    Massies, J.
    Leroux, M.
    Lorenzini, P.
    Chaix, C.
    PHYSICA STATUS SOLIDI C - CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 3, NO 6, 2006, 3 (06): : 2325 - 2328