ON SHAPE OPTIMIZATION PROBLEMS INVOLVING THE FRACTIONAL LAPLACIAN

被引:27
|
作者
Dalibard, Anne-Laure [1 ]
Gerard-Varet, David [2 ,3 ]
机构
[1] Ecole Normale Super, CNRS, DMA, F-75005 Paris, France
[2] IMJ, F-75013 Paris, France
[3] Univ Paris 07, F-75013 Paris, France
关键词
Fractional laplacian; fhape optimization; shape derivative; moving plane method; BOUNDARY;
D O I
10.1051/cocv/2012041
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Our concern is the computation of optimal shapes in problems involving (-Delta)(1/2). We focus on the energy J(Omega) associated to the solution u(Omega) of the basic Dirichlet problem (-Delta)(1/2) u(Omega) = 1 in Omega, u = 0 in Omega(c). We show that regular minimizers Omega of this energy under a volume constraint are disks. Our proof goes through the explicit computation of the shape derivative (that seems to be completely new in the fractional context), and a refined adaptation of the moving plane method.
引用
收藏
页码:976 / 1013
页数:38
相关论文
共 50 条
  • [21] SUPER-CRITICAL PROBLEMS INVOLVING THE FRACTIONAL P-LAPLACIAN
    Wu, Zijian
    Chen, Haibo
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2023, 13 (04): : 2065 - 2073
  • [22] Degenerate Kirchhoff-type hyperbolic problems involving the fractional Laplacian
    Pan, Ning
    Pucci, Patrizia
    Zhang, Binlin
    JOURNAL OF EVOLUTION EQUATIONS, 2018, 18 (02) : 385 - 409
  • [23] Degenerate Kirchhoff-type hyperbolic problems involving the fractional Laplacian
    Ning Pan
    Patrizia Pucci
    Binlin Zhang
    Journal of Evolution Equations, 2018, 18 : 385 - 409
  • [24] A SIGN-CHANGING SOLUTION FOR NONLINEAR PROBLEMS INVOLVING THE FRACTIONAL LAPLACIAN
    Teng, Kaimin
    Wang, Kun
    Wang, Ruimeng
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2015,
  • [25] Infinitely many solutions for a class of elliptic problems involving the fractional Laplacian
    Ge, Bin
    Sun, Liang-Liang
    Cui, Ying-Xin
    Ferrara, Massimiliano
    Zhao, Ting-Ting
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (02) : 657 - 673
  • [26] A class of rearrangement optimization problems involving the p-Laplacian
    Qiu, Chong
    Huang, Yisheng
    Zhou, Yuying
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 112 : 30 - 42
  • [27] OPTIMIZATION OF THE FIRST EIGENVALUE IN PROBLEMS INVOLVING THE p-LAPLACIAN
    Cuccu, Fabrizio
    Emamizadeh, Behrouz
    Porru, Giovanni
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (05) : 1677 - 1687
  • [28] OPTIMIZATION OF THE FIRST EIGENVALUE IN PROBLEMS INVOLVING THE BI-LAPLACIAN
    Cuccu, Fabrizio
    Porru, Giovanni
    DIFFERENTIAL EQUATIONS & APPLICATIONS, 2009, 1 (02): : 219 - 235
  • [29] On the asymptotic analysis of problems involving fractional Laplacian in cylindrical domains tending to infinity
    Chowdhury, Indranil
    Roy, Prosenjit
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2017, 19 (05)
  • [30] Existence results for Kirchhoff-type superlinear problems involving the fractional Laplacian
    Zhang Binlin
    Radulescu, Vicentiu D.
    Wang, Li
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2019, 149 (04) : 1061 - 1081