Optimizing Humanoid Motions Using Recursive Dynamics and Lie Groups

被引:0
|
作者
Suleiman, Wael [1 ]
Yoshida, Eiichi
Laumond, Jean-Paul [1 ]
Monin, Andre [1 ]
机构
[1] Univ Toulouse, CNRS, LAAS, 7 Ave Colonel Roche, F-31077 Toulouse, France
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we present a recursive method for the optimization of humanoid robot motions. The method is based on an efficient dynamics algorithm, which allows the calculation of the gradient function with respect to the control parameters analytically. The algorithm makes use of the theory of Lie groups and Lie algebra. The main objective of this method is to smooth the pre-calculated humanoid motions by minimizing the efforts, and at the same time improving the stability of the humanoid robot during the execution of the planned tasks. Experimental results using HRP-2 platform are provided to validate the proposed method.
引用
收藏
页码:1163 / +
页数:2
相关论文
共 50 条
  • [31] DILIGENT-KIO: A Proprioceptive Base Estimator for Humanoid Robots using Extended Kalman Filtering on Matrix Lie Groups 2021
    Ramadoss, Prashanth
    Romualdi, Giulio
    Dafarra, Stefano
    Chavez, Francisco Javier Andrade
    Traversaro, Silvio
    Pucci, Daniele
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 2904 - 2910
  • [33] A comparison of vakonomic and nonholonornic dynamics for systems on Lie groups
    Jozwikowski, Michal
    Respondek, Witold
    IFAC PAPERSONLINE, 2015, 48 (13): : 81 - 86
  • [34] Thermal lie groups, classical mechanics, and thermofield dynamics
    Santana, AE
    Khanna, FC
    Chu, H
    Chang, YC
    ANNALS OF PHYSICS, 1996, 249 (02) : 481 - 498
  • [35] Tulczyjew's Triplet for Lie Groups II: Dynamics
    Esen, Ogul
    Gumral, Hasan
    JOURNAL OF LIE THEORY, 2017, 27 (02) : 329 - 356
  • [36] Vector fields dynamics as geodesic motion on Lie groups
    Pripoae, GT
    COMPTES RENDUS MATHEMATIQUE, 2006, 342 (11) : 865 - 868
  • [37] Conserving algorithms for the dynamics of Hamiltonian systems on Lie groups
    Lewis, D.
    Simo, J.C.
    Journal of Nonlinear Science, 1994, 4 (01) : 253 - 299
  • [38] Classical and quantum dynamics on Lie groups and coset spaces
    Marinov, MS
    GROUP 21 - PHYSICAL APPLICATIONS AND MATHEMATICAL ASPECTS OF GEOMETRY, GROUPS, AND ALGEBRA, VOLS 1 AND 2, 1997, : 378 - 382
  • [39] An EKF for Lie Groups with Application to Crane Load Dynamics
    Sjoberg, A. M.
    Egeland, O.
    MODELING IDENTIFICATION AND CONTROL, 2019, 40 (02) : 109 - 124
  • [40] Aiming for multibody dynamics on stable humanoid motion with Special Euclideans groups
    Arbulu, Mario
    Balaguer, Carlos
    Monge, Concha
    Martinez, Santiago
    Jardon, Alberto
    IEEE/RSJ 2010 INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2010), 2010, : 691 - 697