Performance improvement potentials of R1234yf mobile air conditioning system

被引:46
|
作者
Qi, Zhaogang [1 ]
机构
[1] Shanghai Jiao Tong Univ, Inst Refrigerat & Cryogen, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
R1234yf; Improvement potential; Superheat; Subcooling; Compressor efficiency; DROP-IN REPLACEMENT; THERMODYNAMIC PROPERTIES; REFRIGERANT; HFO-1234YF; WORKING; EVAPORATOR; R134A;
D O I
10.1016/j.ijrefrig.2015.03.019
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this paper, the performance improvement potentials of R1234yf mobile air conditioning (MAC) system under various operation conditions were studied based on thermodynamic cycle analysis. The effects of superheat at evaporator outlet, subcooling at condenser outlet and compressor efficiencies on system performance were analyzed. It was found that superheat was few benefits for both system coefficient of performance (COP) and cooling capacity. Increasing subcooling from 1K to 10K at condenser outlet, system cooling capacity and COP could be improved by 15% if compressor consumption power was fixed. The isentropic efficiency of the compressor was a key factor in system COP improvement. It was concluded that adding an internal heat exchanger and improving compressor efficiencies would be good options for the future R1234yf MAC system enhancement. (C) 2015 Elsevier Ltd and IIR. All rights reserved.
引用
收藏
页码:35 / 40
页数:6
相关论文
共 50 条
  • [21] Drop-in Performance Analysis and Effect of IHX for an Automotive Air Conditioning System with R1234yf as a Replacement of R134a
    Direk, Mehmet
    Kelesoglu, Alper
    Akin, Ahmet
    STROJNISKI VESTNIK-JOURNAL OF MECHANICAL ENGINEERING, 2017, 63 (05): : 314 - 319
  • [22] PERFORMANCE OF R-1234YF IN MOBILE AIR CONDITIONING SYSTEM UNDER DIFFERENT HEAT LOAD CONDITIONS
    Zhao, Yu
    Chen, Jiangping
    Xu, Baixing
    He, Bin
    INTERNATIONAL JOURNAL OF AIR-CONDITIONING AND REFRIGERATION, 2012, 20 (03)
  • [23] PERFORMANCE OF R1234yf AND R513A AS ALTERNATIVES TO R134a IN AUTOMOTIVE AIR CONDITIONING SYSTEMS IN WINTER
    Meng, Zhaofeng
    Cui, Xiangna
    Liu, Yin
    Wang, Shun
    DU, Chenyang
    Hu, Rusheng
    THERMAL SCIENCE, 2023, 27 (3A): : 1937 - 1946
  • [24] Comparative Investigation on the Thermophysical Property and System Performance of R1234yf
    Li, Gailian
    Jin, Tingxiang
    Xu, Ran
    Lv, Zijian
    ENERGIES, 2023, 16 (13)
  • [25] Experimental and Numerical Studies on an Automobile Air Conditioning System With the Refrigerants R134a, R1234yf, and R1234ze(E)
    Gurudatt, H. M.
    Narasimham, G. S. V. L.
    Sadashive Gowda, B.
    JOURNAL OF THERMAL SCIENCE AND ENGINEERING APPLICATIONS, 2024, 16 (01)
  • [26] R1234yf and R744 as alternatives to R134a at mobile air conditioners
    Onan C.
    Erdem S.
    Journal of Energy Systems, 2021, 5 (04): : 284 - 295
  • [27] Low global warming potential R1234yf in a mobile air-conditioning system: a study on performance prediction using different machine learning approaches
    Prabakaran, Rajendran
    Gomathi, B.
    Jeyalakshmi, P.
    Thangamuthu, Mohanraj
    Lal, Dhasan Mohan
    Kim, Sung Chul
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2024, : 14415 - 14432
  • [28] Energetic and exergetic performance comparison o an experimental automotive air conditioning system using refrigerants R1234yf and R134a
    Alkan, Alpaslan
    Kolip, Ahmet
    Hosoz, Murat
    JOURNAL OF THERMAL ENGINEERING, 2021, 7 (05): : 1163 - 1173
  • [29] Applications of refrigerant R1234yf in heating, air conditioning and refrigeration systems: A decade of researches
    Pabon, Juan J. G.
    Khosravi, Ali
    Belman-Flores, J. M.
    Machado, Luiz
    Revellin, Remi
    INTERNATIONAL JOURNAL OF REFRIGERATION, 2020, 118 : 104 - 113
  • [30] Energy, exergy and entropy analysis with R1234yf as an alternate refrigerant to R134a of automobile air conditioning system
    Patel, Bhaveshkumar
    Parekh, Ashok
    JOURNAL OF THERMAL ENGINEERING, 2024, 10 (01): : 101 - 114