Supervoxel-Based Segmentation of 3D Volumetric Images

被引:1
|
作者
Yang, Chengliang [1 ]
Sethi, Manu [1 ]
Rangarajan, Anand [1 ]
Ranka, Sanjay [1 ]
机构
[1] Univ Florida, Dept Comp & Informat Sci & Engn, Gainesville, FL 32611 USA
来源
关键词
NORMALIZED CUTS; CONTOURS;
D O I
10.1007/978-3-319-54181-5_3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
While computer vision has made noticeable advances in the state of the art for 2D image segmentation, the same cannot be said for 3D volumetric datasets. In this work, we present a scalable approach to volumetric segmentation. The methodology, driven by supervoxel extraction, combines local and global gradient-based features together to first produce a low level supervoxel graph. Subsequently, an agglomerative approach is used to group supervoxel structures into a segmentation hierarchy with explicitly imposed containment of lower level supervoxels in higher level supervoxels. Comparisons are conducted against state of the art 3D segmentation algorithms. The considered applications are 3D spatial and 2D spatiotemporal segmentation scenarios.
引用
收藏
页码:37 / 53
页数:17
相关论文
共 50 条
  • [41] Segmentation-based interpolation of 3D medical images
    Pan, ZG
    Yin, XS
    Wu, GH
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2004, PT 2, 2004, 3044 : 731 - 740
  • [42] 3D Dendrite Spine Detection - A Supervoxel Based Approach
    Antonio Ortiz, Cesar
    Gonzalo-Martin, Consuelo
    Maria Pena, Jose
    Menasalvas, Ernestina
    ROUGH SETS AND INTELLIGENT SYSTEMS PARADIGMS, RSEISP 2014, 2014, 8537 : 359 - 366
  • [43] Individual tree segmentation for airborne LiDAR point cloud data using spectral clustering and supervoxel-based algorithm
    Wang W.
    Pang Y.
    Du L.
    Zhang Z.
    Liang X.
    National Remote Sensing Bulletin, 2022, 26 (08) : 1650 - 1661
  • [44] Multi-task learning approach for volumetric segmentation and reconstruction in 3D OCT images
    Cahyo, Dheo A. Y.
    Yow, Ai Ping
    Saw, Seang-Mei
    Ang, Marcus
    Girard, Michael
    Schmetterer, Leopold
    Wong, Damon
    BIOMEDICAL OPTICS EXPRESS, 2021, 12 (12) : 7348 - 7360
  • [45] A 3D deformable surface model for segmentation of objects from volumetric data in medical images
    Ghanei, A
    Soltanian-Zadeh, H
    Windham, JP
    COMPUTERS IN BIOLOGY AND MEDICINE, 1998, 28 (03) : 239 - 253
  • [46] An automatic segmentation algorithm for 3D cell cluster splitting using volumetric confocal images
    Indhumathi, C.
    Cai, Y. Y.
    Guan, Y. Q.
    Opas, M.
    JOURNAL OF MICROSCOPY, 2011, 243 (01) : 60 - 76
  • [47] Initialisation of 3D Level Set for Hippocampus Segmentation from Volumetric Brain MR Images
    Hajiesmaeili, Maryam
    Dehmeshki, Jamshid
    Nakhjavanlo, Bashir Bagheri
    Ellis, Tim
    6TH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2014), 2014, 9159
  • [48] Supervised recursive segmentation of volumetric CT images for 3D reconstruction of lung and vessel tree
    Li, Xuanping
    Wang, Xue
    Dai, Yixiang
    Zhang, Pengbo
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2015, 122 (03) : 316 - 329
  • [49] 3D augmentation for volumetric whole heart segmentation
    Sutassananon, Krittanat
    Kusakunniran, Worapan
    Orgun, Mehmet
    Siriapisith, Thanongchai
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [50] AdaSLIC: adaptive supervoxel generation for volumetric medical images
    Amal Amami
    Zouhour Ben Azouz
    Monia Turki-Hadj Alouane
    Multimedia Tools and Applications, 2019, 78 : 3723 - 3745