SPATIAL-SPECTRAL CLASSIFICATION BASED ON THE UNSUPERVISED CONVOLUTIONAL SPARSE AUTO-ENCODER FOR HYPERSPECTRAL REMOTE SENSING IMAGERY

被引:8
|
作者
Han, Xiaobing [1 ,2 ]
Zhong, Yanfei [1 ,2 ]
Zhang, Liangpei [1 ,2 ]
机构
[1] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430079, Peoples R China
[2] Wuhan Univ, Collaborat Innovat Ctr Geospatial Technol, Wuhan 430079, Peoples R China
来源
关键词
spatial-spectral classification; hyperspectral remote sensing imagery; sparse auto-encoder (SAE); convolution; unsupervised convolutional sparse auto-encoder (UCSAE); ALGORITHM;
D O I
10.5194/isprsannals-III-7-25-2016
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Current hyperspectral remote sensing imagery spatial-spectral classification methods mainly consider concatenating the spectral information vectors and spatial information vectors together. However, the combined spatial-spectral information vectors may cause information loss and concatenation deficiency for the classification task. To efficiently represent the spatial-spectral feature information around the central pixel within a neighbourhood window, the unsupervised convolutional sparse auto-encoder (UCSAE) with window-in-window selection strategy is proposed in this paper. Window-in-window selection strategy selects the sub-window spatial-spectral information for the spatial-spectral feature learning and extraction with the sparse auto-encoder (SAE). Convolution mechanism is applied after the SAE feature extraction stage with the SAE features upon the larger outer window. The UCSAE algorithm was validated by two common hyperspectral imagery (HSI) datasets-Pavia University dataset and the Kennedy Space Centre (KSC) dataset, which shows an improvement over the traditional hyperspectral spatial-spectral classification methods.
引用
收藏
页码:25 / 31
页数:7
相关论文
共 50 条
  • [31] Tobacco leaf maturity classification based on sparse auto-encoder
    Wang, Jie
    Jia, Yuheng
    Zhao, Xin
    Tobacco Science and Technology, 2014, (09): : 18 - 22
  • [32] SPATIAL-SPECTRAL CONVOLUTIONAL SPARSE NEURAL NETWORK FOR HYPERSPECTRAL IMAGE DENOISING
    Xiong, Fengchao
    Ye, Minchao
    Zhou, Jun
    Qian, Yuntao
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 1225 - 1228
  • [33] Mapping urban land cover based on spatial-spectral classification of hyperspectral remote-sensing data
    Akbari, Davood
    Homayouni, Saeid
    Safari, Abdolreza
    Mehrshad, Naser
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2016, 37 (02) : 440 - 454
  • [34] A Spatial-Spectral Prototypical Network for Hyperspectral Remote Sensing Image
    Tang, Haojin
    Li, Yanshan
    Han, Xiao
    Huang, Qinghua
    Xie, Weixin
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (01) : 167 - 171
  • [35] Unsupervised Spectral-Spatial Feature Learning With Stacked Sparse Autoencoder for Hyperspectral Imagery Classification
    Tao, Chao
    Pan, Hongbo
    Li, Yansheng
    Zou, Zhengrou
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (12) : 2438 - 2442
  • [36] Unsupervised Deep Spectrum Sensing: A Variational Auto-Encoder Based Approach
    Xie, Jiandong
    Fang, Jun
    Liu, Chang
    Yang, Linxiao
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (05) : 5307 - 5319
  • [37] Multicluster Spatial-Spectral Unsupervised Feature Selection for Hyperspectral Image Classification
    Li, Haichang
    Xiang, Shiming
    Zhong, Zisha
    Ding, Kun
    Pan, Chunhong
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (08) : 1660 - 1664
  • [38] Unsupervised Spatial-Spectral CNN-Based Feature Learning for Hyperspectral Image Classification
    Zhang, Shuyu
    Xu, Meng
    Zhou, Jun
    Jia, Sen
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [39] A Novel Spatial-Spectral Sparse Representation for Hyperspectral Image Classification Based on Neighborhood Segmentation
    Wang Cai-ling
    Wang Hong-wei
    Hu Bing-liang
    Wen Jia
    Xu Jun
    Li Xiang-juan
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36 (09) : 2919 - 2924
  • [40] Semi-supervised classification for hyperspectral imagery based on spatial-spectral Label Propagation
    Wang, Liguo
    Hao, Siyuan
    Wang, Qunming
    Wang, Ying
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2014, 97 : 123 - 137