A Novel Similarity Measure Based on Weighted Bipartite Network for Collaborative Filtering Recommendation

被引:1
|
作者
Xia, Jianxun [1 ]
Wu, Fei [1 ]
Xie, Changsheng [1 ]
机构
[1] Wuhan Natl Lab Optoelect, Wuhan 430074, Hubei, Peoples R China
关键词
Personal recommendation; Collaborative filtering; Weighted bipartite network; Similarity measure;
D O I
10.4028/www.scientific.net/AMM.263-266.1834
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper presents a novel approach to compute user similarity based on weighted bipartite network and resource allocation principle for collaborative filtering recommendation. The key is to calculate the asymmetric user weighted matrix and translate it into a symmetric user similarity matrix. We carry out extensive experiments over Movielens data set and demonstrate that the proposed approach can yield better recommendation accuracy and can partly to alleviate the trouble of sparseness. Compare with traditional collaborative filtering recommendation algorithms based on Pearson correlation similarity and adjusted cosine similarity, the proposed method can improve the average predication accuracy by 6.7% and 0.6% respectively.
引用
收藏
页码:1834 / 1837
页数:4
相关论文
共 50 条
  • [41] A new similarity measure for collaborative filtering based recommender systems
    Gazdar, Achraf
    Hidri, Lotfi
    KNOWLEDGE-BASED SYSTEMS, 2020, 188
  • [42] An Effective Similarity Measure for Neighborhood-based Collaborative Filtering
    Tan Nghia Duong
    Viet Duc Than
    Trong Hiep Tran
    Quang Hieu Dang
    Duc Minh Nguyen
    Hung Manh Pham
    PROCEEDINGS OF 2018 5TH NAFOSTED CONFERENCE ON INFORMATION AND COMPUTER SCIENCE (NICS 2018), 2018, : 250 - 254
  • [43] A Collaborative Filtering Recommendation Approach Based on User Rating Similarity and User Attribute Similarity
    Ge, Feng
    ADVANCES IN MECHATRONICS, AUTOMATION AND APPLIED INFORMATION TECHNOLOGIES, PTS 1 AND 2, 2014, 846-847 : 1736 - 1739
  • [44] A Collaborative Filtering Recommendation Algorithm Based on Item Genre and Rating Similarity
    Zhang, Ye
    Song, Wei
    PROCEEDINGS OF THE 2009 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND NATURAL COMPUTING, VOL II, 2009, : 72 - 75
  • [45] A New Similarity Computation Method in Collaborative Filtering based Recommendation System
    Wu, Xiaokun
    Huang, Yongfeng
    Wang, Shihui
    2017 IEEE 86TH VEHICULAR TECHNOLOGY CONFERENCE (VTC-FALL), 2017,
  • [46] A Collaborative Filtering Recommendation Algorithm Based on Item Similarity of User Preference
    Sun, Tieli
    Wang, Lijun
    Guo, Qinghe
    WKDD: 2009 SECOND INTERNATIONAL WORKSHOP ON KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGS, 2009, : 60 - 63
  • [47] Collaborative Filtering Recommendation Algorithm Based on Item Clustering and Global Similarity
    Wei, Suyun
    Ye, Ning
    Zhang, Shuo
    Huang, Xia
    Zhu, Jian
    2012 FIFTH INTERNATIONAL CONFERENCE ON BUSINESS INTELLIGENCE AND FINANCIAL ENGINEERING (BIFE), 2012, : 69 - 72
  • [48] Novel recommendation of user-based collaborative filtering
    1600, Digital Information Research Foundation (12):
  • [49] A Collaborative Filtering Recommendation Algorithm Based on Weighted SimRank and Social Trust
    Su, Chang
    Zhang, Butao
    MATERIALS SCIENCE, ENERGY TECHNOLOGY, AND POWER ENGINEERING I, 2017, 1839
  • [50] Improved Collaborative Filtering Recommendation Algorithm based on Weighted Association Rules
    Yang, Hai
    INFORMATION TECHNOLOGY APPLICATIONS IN INDUSTRY II, PTS 1-4, 2013, 411-414 : 94 - 97