Fluctuations in interacting particle systems with memory

被引:13
|
作者
Harris, Rosemary J. [1 ]
机构
[1] Queen Mary Univ London, Sch Math Sci, London E1 4NS, England
关键词
driven diffusive systems (theory); stochastic particle dynamics (theory); current fluctuations; large deviations in non-equilibrium systems; NONEQUILIBRIUM STATISTICAL-MECHANICS; ASYMMETRIC EXCLUSION MODEL; TIME RANDOM-WALKS; STOCHASTIC DYNAMICS; LARGE DEVIATIONS; OPEN BOUNDARIES; SYMMETRY; PHYSICS; LAW;
D O I
10.1088/1742-5468/2015/07/P07021
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We consider the effects of long-range temporal correlations in many-particle systems, focusing particularly on fluctuations about the typical behaviour. For a specific class of memory dependence we discuss the modification of the large deviation principle describing the probability of rare currents and show how superdiffusive behaviour can emerge. We illustrate the general framework with detailed calculations for a memory-dependent version of the totally asymmetric simple exclusion process as well as indicating connections to other recent work.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Time fluctuations in isolated quantum systems of interacting particles
    Zangara, Pablo R.
    Dente, Axel D.
    Torres-Herrera, E. J.
    Pastawski, Horacio M.
    Iucci, Anibal
    Santos, Lea F.
    PHYSICAL REVIEW E, 2013, 88 (03):
  • [32] Nonparametric adaptive estimation for interacting particle systems
    Comte, Fabienne
    Genon-Catalot, Valentine
    SCANDINAVIAN JOURNAL OF STATISTICS, 2023, 50 (04) : 1716 - 1755
  • [33] TRANSIENT BIMODALITY IN INTERACTING PARTICLE-SYSTEMS
    CALDERONI, P
    PELLEGRINOTTI, A
    PRESUTTI, E
    VARES, ME
    JOURNAL OF STATISTICAL PHYSICS, 1989, 55 (3-4) : 523 - 577
  • [34] Kinetic limits for a class of interacting particle systems
    Rezakhanlou, F
    PROBABILITY THEORY AND RELATED FIELDS, 1996, 104 (01) : 97 - 146
  • [35] Interacting particle systems and Jacobi style identities
    Balazs, Marton
    Fretwell, Dan
    Jay, Jessica
    RESEARCH IN THE MATHEMATICAL SCIENCES, 2022, 9 (03)
  • [36] The Geometry of a Parameter Space of Interacting Particle Systems
    Christoph Bandt
    Journal of Statistical Physics, 1999, 96 : 883 - 906
  • [37] Stochastic interacting particle systems out of equilibrium
    Bertini, L.
    De Sole, A.
    Gabrielli, D.
    Jona-Lasinio, G.
    Landim, C.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2007,
  • [38] Noise, Bifurcations, and Modeling of Interacting Particle Systems
    Mier-y-Teran-Romero, Luis
    Forgoston, Eric
    Schwartz, Ira B.
    2011 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, 2011, : 3905 - 3910
  • [39] Information propagation for interacting-particle systems
    Schuch, Norbert
    Harrison, Sarah K.
    Osborne, Tobias J.
    Eisert, Jens
    PHYSICAL REVIEW A, 2011, 84 (03):
  • [40] Stochastic resetting in interacting particle systems: a review
    Nagar, Apoorva
    Gupta, Shamik
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2023, 56 (28)