MULTIPLE SOLUTIONS FOR A NEUMANN-TYPE DIFFERENTIAL INCLUSION PROBLEM INVOLVING THE p(.)-LAPLACIAN

被引:12
|
作者
Chinni, Antonia [1 ]
Livrea, Roberto [2 ]
机构
[1] Univ Messina, Fac Engn, Dept Sci Engn & Architecture, Math Sect, I-98166 Messina, Italy
[2] Univ Reggio Calabria, Fac Engn, Dept MECMAT, I-89100 Reggio Di Calabria, Italy
关键词
p(x)-Laplacian; variable exponent Sobolev space; critical points of locally Lipschitz continuous functionals; differential inclusion problem; three-critical-points theorem; CRITICAL-POINTS; VARIATIONAL PRINCIPLE; ELLIPTIC PROBLEMS; FUNCTIONALS; EXISTENCE;
D O I
10.3934/dcdss.2012.5.753
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using a multiple critical points theorem for locally Lipschitz continuous functionals, we establish the existence of at least three distinct solutions for a Neumann-type differential inclusion problem involving the p(.)-Laplacian.
引用
收藏
页码:753 / 764
页数:12
相关论文
共 50 条
  • [21] Multiplicity of solutions for differential inclusion problems in involving the p(x)-Laplacian
    Ge, Bin
    Zhou, Qing-Mei
    Xue, Xiao-Ping
    MONATSHEFTE FUR MATHEMATIK, 2012, 168 (3-4): : 363 - 380
  • [22] Three solutions to a Neumann problem for elliptic equations involving the p-Laplacian
    Bonanno, G
    Candito, P
    ARCHIV DER MATHEMATIK, 2003, 80 (04) : 424 - 429
  • [23] Existence of infinitely many solutions for a Neumann problem involving the p(x)-Laplacian
    Fan, Xianling
    Ji, Chao
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 334 (01) : 248 - 260
  • [24] Three solutions to a Neumann problem for elliptic equations involving the p-Laplacian
    G. Bonanno
    P. Candito
    Archiv der Mathematik, 2003, 80 : 424 - 429
  • [25] Homoclinic solutions for a differential inclusion system involving the p(t)-Laplacian
    Cheng, Jun
    Chen, Peng
    Zhang, Limin
    ADVANCES IN NONLINEAR ANALYSIS, 2023, 12 (01)
  • [26] Three Solutions for a Discrete Nonlinear Neumann Problem Involving the p-Laplacian
    Candito, Pasquale
    D'Agui, Giuseppina
    ADVANCES IN DIFFERENCE EQUATIONS, 2010,
  • [27] THREE SOLUTIONS FOR A NEUMANN BOUNDARY VALUE PROBLEM INVOLVING THE p-LAPLACIAN
    Averna, Diego
    Bonanno, Gabriele
    MATEMATICHE, 2005, 60 (01): : 81 - 91
  • [28] Multiple solutions to a class of inclusion problem with the p(x)-Laplacian
    Ge, Bin
    Zhou, Qing Mei
    APPLICABLE ANALYSIS, 2012, 91 (05) : 895 - 909
  • [29] Infinitely many solutions for a differential inclusion problem in RN involving p(x)-Laplacian and oscillatory terms
    Ge, Bin
    Zhou, Qing-Mei
    Xue, Xiao-Ping
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2012, 63 (04): : 691 - 711
  • [30] Multiple solutions for a Kirchhoff-type problem involving the p(x)-Laplacian operator
    Cammaroto, F.
    Vilasi, L.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (05) : 1841 - 1852