Conformation of a semiflexible filament in a quenched random potential

被引:4
|
作者
Slepukhin, Valentin M. [1 ]
Grill, Maximilian J. [2 ]
Mueller, Kei W. [2 ,3 ]
Wall, Wolfgang A. [2 ]
Levine, Alex J. [1 ,4 ,5 ]
机构
[1] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA
[2] Tech Univ Munich, Inst Computat Mech, Dept Mech Engn, D-80333 Munich, Germany
[3] Lawrence Livermore Natl Lab, Computat Engn Div, Struct & Appl Mech Grp, 7000 East Ave, Livermore, CA 94550 USA
[4] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
[5] Univ Calif Los Angeles, Dept Biomath, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
DYNAMICS; INTERFACES; THRESHOLD;
D O I
10.1103/PhysRevE.99.042501
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Motivated by the observation of the storage of excess elastic free energy, prestress, in cross-linked semiflexible networks, we consider the problem of the conformational statistics of a single semiflexible polymer in a quenched random potential. The random potential, which represents the effect of cross-linking to other filaments, is assumed to have a finite correlation length xi and mean strength V-0. We examine statistical distribution of curvature in filament with thermal persistence length l(P) and length L-0 in the limit in which l(P) >> L-0. We compare our theoretical predictions to finite-element Brownian dynamics simulations. Finally, we comment on the validity of replica field techniques in addressing these questions.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Anisotropic random networks of semiflexible polymers
    Benetatos, Panayotis
    Zippelius, Annette
    PHYSICAL REVIEW LETTERS, 2007, 99 (19)
  • [22] Dirac operator as a random matrix and the quenched limit of QCD with chemical potential
    Stephanov, MA
    NUCLEAR PHYSICS B, 1997, : 469 - 471
  • [23] Colloidal diffusion over a quenched two-dimensional random potential
    Su, Yun
    Ma, Xiao-guang
    Lai, Pik-Yin
    Tong, Penger
    SOFT MATTER, 2017, 13 (27) : 4773 - 4785
  • [24] Semiflexible polymer conformation, distribution and migration in microcapillary flows
    Chelakkot, Raghunath
    Winkler, Roland G.
    Gompper, Gerhard
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2011, 23 (18)
  • [25] The relation between quenched and annealed Lyapunov exponents in random potential on trees
    Wiegel, Gundelinde Maria
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2018, 128 (06) : 1988 - 2006
  • [26] Design and synthesis of semiflexible substituted polyacetylenes with helical conformation
    Nomura, R
    Nakako, H
    Masuda, T
    JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 2002, 190 (1-2) : 197 - 205
  • [27] QUENCHED RANDOM GRAPHS
    BACHAS, C
    DECALAN, C
    PETROPOULOS, PMS
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (18): : 6121 - 6127
  • [28] Semiflexible filament networks viewed as fluctuating beam-frames
    Su, Tianxiang
    Purohit, Prashant K.
    SOFT MATTER, 2012, 8 (17) : 4664 - 4674
  • [29] Rods-on-string idealization captures semiflexible filament dynamics
    Chandran, Preethi L.
    Mofrad, Mohammad R. K.
    PHYSICAL REVIEW E, 2009, 79 (01):
  • [30] Braiding Dynamics in Semiflexible Filament Bundles under Oscillatory Forcing
    Slepukhin, Valentin M.
    Levine, Alex J.
    POLYMERS, 2021, 13 (13)